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Abstract

We present the completed catalog of ultradiffuse galaxy (UDG) candidates (7070 objects) from our search of the
DR9 Legacy Survey images, including distance and total mass estimates for 1529 and 1436 galaxies, respectively,
that we provide and describe in detail. From the sample with estimated distances, we obtain a sample of 585 UDGs
(μ0,g� 24 mag arcsec−2 and re� 1.5 kpc) over 20,000 square degrees of sky in various environments. We
conclude that UDGs in our sample are limited to 1010Mh/Me 1011.5 and are on average a factor of 1.5–7
deficient in stars relative to the general population of galaxies of the same total mass. That factor increases with
increasing galaxy size and mass up to a factor of ∼10 when the total mass of the UDG increases beyond Mh=
1011 Me. We do not find evidence that this factor has a dependence on the UDGs large-scale environment.

Unified Astronomy Thesaurus concepts: Galaxy formation (595); Galaxy evolution (594); Galaxy properties (615);
Low surface brightness galaxies (940)

Supporting material: machine-readable table

1. Introduction

The flurry of activity, both observational and theoretical in
nature, since the van Dokkum et al. (2015) study that coined
the term ultradiffuse galaxies (UDGs) to describe physically
large low-surface-brightness galaxies, has focused on under-
standing how these systems form and whether those processes
highlight novel galaxy formation pathways or reflect extreme
forms of already known phenomena. Challenges in resolving
this question include: (1) a lack of homogeneous UDG data
across environments; (2) the possibly heterogeneous nature of
the objects selected using arbitrary physical size and surface
brightness criteria (see Trujillo et al. 2020; Li et al. 2022, for
attempts to define more physically motivated criteria); and (3) a
paucity of constraints on the underlying dark matter halos that
host these systems.

The first of these challenges we address with our search for
UDGs in the images provided by the Dark Energy Spectro-
scopic Instrument (DESI) Legacy Imaging Surveys (hereafter
referred to as the Legacy Survey; Dey et al. 2019). We have
described the basic principles of our work with the survey data
and provided candidate UDG catalogs across subsets of the
data in three papers (Zaritsky et al. 2019, 2021, 2022, hereafter
Papers I, II, and III, respectively). We refer to the survey as
“SMUDGes,” which stems from the survey’s full title,
Systematically Measuring Ultra-Diffuse Galaxies. Here we
present our complete catalog by augmenting a previous release
of our analysis of the southern portion of the Legacy Survey
(Paper III) with an analysis of the northern portion that we

describe here in detail. Following most of the previous
literature, we primarily identify candidates by applying a
criterion based on central surface brightness in the g band,
μ0� 24 mag arcsec−2. Specific to this survey, we also require
candidates to have an angular half-light radius, re� 5 3. This
peculiar size limit was set to correspond to a physical re=
2.5 kpc at the distance of the Coma cluster, the environment
explored by the first UDG surveys (Koda et al. 2015; van
Dokkum et al. 2015; Yagi et al. 2016). Unfortunately, selecting
on angular size but defining UDGs in terms of physical units
exacerbates the problem that any sample of UDG candidates is
a heterogeneous population of galaxies.
The heterogeneity of the UDG samples and the initial

overestimated masses of some UDGs (see van Dokkum et al.
2016) has led to apparently conflicting results regarding the
classification of UDGs. Studies of individual UDGs (e.g.,
Beasley et al. 2016; Toloba et al. 2018; van Dokkum et al.
2019b; Forbes et al. 2021), which naturally focus on the
largest, brightest objects, tend to conclude that these are
relatively massive galaxies (with total masses within the virial
radius, including baryonic and dark matter, Mh, roughly
comparable to, or larger than, that of the Large Magellanic
Cloud, Mh∼ 1.4× 1011 Me; Erkal et al. 2019), while studies
using statistical samples of UDGs (e.g., Beasley & Trujillo
2016; Amorisco et al. 2018), which naturally focus on the more
numerous smaller objects, tend to conclude that UDGs are
lower-mass galaxies (Mh< 1011 Me). However, the discre-
pancy is sometimes just a matter of emphasis. For example,
the result of Sifón et al. (2018), who placed a statistical
limit on UDG halo masses from gravitational lensing of
log(M200/Me)� 11.8 with high confidence, is sometimes cited
as falling in the low-mass camp simply because it is compared
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to the initial claims that some UDGs could have Mh� 1012Me

(van Dokkum et al. 2016).
Reliable total mass measurements for statistical samples of

UDGs are critical because we can use them to assess the degree
to which these galaxies have underproduced stars, or “failed,”
during their existence. The first formation scenario for UDGs
posited that the loss of gas at early times in dense environments
led to massive failed galaxies in the Coma cluster (van
Dokkum et al. 2015). This suggestion was quickly followed up
by an opposing model where it was proposed that UDGs
represent the tail of high-angular-momentum halos, interpreting
UDGs instead as “puffy” low-mass galaxies (Amorisco &
Loeb 2016). Subsequently, numerical simulations have intro-
duced a number of other possible evolutionary factors (for
some examples, see Di Cintio et al. 2017; Chan et al. 2018;
Martin et al. 2019; Wright et al. 2021). Although the situation
is clearly more complex than suggested by early toy models,
empirical estimates of Mh are constraining for any scenario.

The other factor that is often cited as critical in UDG
formation is the environment (e.g., Safarzadeh & Scannapieco
2017; Chan et al. 2018; Carleton et al. 2019; Sales et al. 2020;
Wright et al. 2021). Interactions, either with individual galaxies
or with the global environment, are often invoked to truncate
star formation and produce the typically quiescent appearance
of UDGs (van Dokkum et al. 2015; Safarzadeh & Scanna-
pieco 2017; Chan et al. 2018; Grishin et al. 2021). The
identification of UDGs in the field (e.g., Martínez-Delgado
et al. 2016; Román & Trujillo 2017; Leisman et al. 2017; Greco
et al. 2018) directly demonstrates that dense environments are
not necessary for UDG formation. However, even more
restrictive are subsequent observations that appear to show
little if any change in the number of UDGs per total host
environment mass across a wide range of environments (van
der Burg et al. 2016, 2017; Román & Trujillo 2017;
Karunakaran & Zaritsky 2023; Goto et al. 2023). If environ-
ment plays a role beyond quenching star formation (UDG color
does depend on environment; Prole et al. 2019; Kadowaki et al.
2021), creation and destruction of UDGs must be delicately
balanced.

Our challenge is therefore fourfold. First, identify a sample
of UDG candidates across environments in sufficient numbers
for statistical study. This we do as described in Papers I–III and
complete that task here (Sections 2, 3, and 4). Second, estimate
distances for as large a fraction of those candidates as possible
to determine which candidates satisfy the UDG size criterion.
We do this using the distance-by-association technique
presented in Paper III (Section 4.1). As larger samples of
spectroscopic redshifts become available, the method will
become more robust, so although we present our distance
estimates, we consider this to be a living catalog that will
improve with time. Third, provide a measurement of the local
environment (Section 4.2). Such an estimate is a byproduct of
our distance estimation technique (Section 4.1). Finally,
estimate Mh for as large a sample as possible, which we do in
Section 4.3 using the technique presented by Zaritsky &
Behroozi (2023). We close by discussing the implication of our
mass measurements on the star formation efficiency of UDGs
in Section 5. We use a WMAP9 ΛCDM flat cosmology
throughout with Ω= 0.287, and H0= 69.3 km s−1 Mpc−1

(Hinshaw et al. 2013). Magnitudes are on the AB system
(Oke 1964; Oke & Gunn 1983).

2. The Data

We report the results of our analysis of Data Release 9
(DR9) of the northern portion of the Legacy Survey, which
includes observations obtained by the MOSAIC camera at the
KPNO 4m telescope (MzLS, Mayall z-band Legacy Survey)
and the 90Prime camera (Williams et al. 2004) at the Steward
Observatory 2.3 m telescope (BASS, Beijing–Arizona Sky
Survey). In addition to these telescopes, the full survey also
employs DECam (DECaLS) at the CTIO 4 m, which was the
focus of our previous work described in Papers I–III. This
paper presents our final SMUDGes catalog release, and we do
not intend to reprocess data using DR10 or any future release.
Briefly, the Legacy Survey (Dey et al. 2019) was initiated to

provide targets for the DESI survey drawn from deep, three-
band (g= 24.7, r= 23.9, and z= 23.0 AB mag, 5σ point-
source limits) images. That survey covers about 14,000 deg2 of
sky visible from the northern hemisphere between declinations
approximately bounded by −18° and +84°. The footprint of
DR9 (Figure 1) also includes an additional 6000 deg2

extending down to −68° imaged at the CTIO by the Dark
Energy Survey (The Dark Energy Survey Collaboration 2005).
As shown in the figure, the footprint of MzLS and BASS
(hereafter, jointly referred to as MB) has three-band coverage
of about 5000 deg2 at declinations 32° with about 300 deg2

overlapping the region observed by DECaLS.
Because of the significant differences between the instru-

mentation used for MB and DECaLS, we have modified the
pipeline developed for DECam that was used in our earlier
work. Although the basic approach remains similar, there are
noteworthy changes at various steps that we describe below.

3. Processing MB

As previously mentioned, the northern Legacy Survey data
comes from two different telescope/camera combinations. The
MOSAIC camera (MzLS) provides imaging in the z band and
consists of four 4096× 4096 CCDs with a scale of 0 26
pixel−1 and a field of view of ∼36′ (Dey et al. 2016; Schweiker
2016). Imaging in the g and r bands is obtained with the
90Prime camera (BASS), which contains four 4096× 4096
CCDs with a scale of 0 454 pixel−1 and a field of view of
1°.08× 1°.03 (Zou et al. 2017). BASS observations were taken
from 2015 November 12 to 2019 March 7 and MzLS from

Figure 1. Footprint of the sky covered in all three bands by the DR9 release of
the Legacy Survey (Dey et al. 2019). Observations used in this study from the
northern part of the Legacy Survey are shown in tan (MzLS and BASS, jointly
referred to as MB). Footprints of our previous work in Coma (Paper I), Sloan
Digital Sky Survey Stripe 82 (Paper II), and the full southern region of the
Survey (DECaLS and DES; Paper III) are displayed in green, red, and blue,
respectively. The Galactic plane is traced by the orange curve.
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2015 November 19 to 2018 February 12.7 As before, our
processing and analysis of these data are performed on the
Puma cluster at the University of Arizona High Performance
Computing Center.8

As in our previous work, we summarize the major steps in
identifying potential UDGs as: (1) image processing that
produces a preliminary list of candidates; (2) rejection of those
that are likely to be Galactic cirrus contamination; (3)
automated classification screening for false-positive detections;
(4) visual confirmation of remaining candidates; (5) estimation
of completeness, biases, and uncertainties using simulated
sources; and (6) creation of the catalog. Details of these
processes have been previously described and, other than brief
summaries, we only address pipeline modifications here.

In a significant departure from our previous methodology,
we now use the three-band coadded images generated by the
Legacy Survey pipeline and publicly available on their
website9 in our UDG search. The Survey footprint is divided
into 0.25× 0.25 deg2 “bricks” as described by Dey et al.
(2019). During coaddition, the camera images are reprojected
at a pixel scale of 0 262 with north up, converted into
calibrated flux units of nanomaggies, and sky-subtracted. The
actual brick sizes are 3600× 3600 pixel2, allowing a small
amount of overlap. We limit our analyses to those included in
the survey-bricks-dr9-north.fits.gz file, which is included in the
Legacy Survey’s DR9. This file has information for each brick,
including the median number of exposures in each filter. As in
our earlier work, our automated classifier (Section 3.4) requires
cutout images from all three bands and, therefore, we only
include those bricks having at least one observation in each
band. We further exclude a small number of observations
(<1%) that were obtained in equatorial regions to cross-
calibrate photometry with DECaLS and DES imaging (Dey
et al. 2019), leaving 83,038 bricks for analysis of which about
6% overlap with DECaLS in the decl. range of ∼32°–34°
(Figure 1).

3.1. Image Processing for MB

After downloading brick images and supporting files from
the Legacy Survey website, we identify potential UDG
candidates using the following steps:

1. Although the coadded images have already passed
through the Legacy Survey pipeline, we additionally
replace saturated pixels with values obtained from
neighboring pixels using the methodology described in
Paper I.

2. We remove objects on bricks that are clearly too bright to
qualify as UDG candidates. As in Paper III, this is done
using modeling to subtract sources that have SExtractor
(Bertin & Arnouts 1996) MU_MAX values that are
2 mag arcsec−2 brighter than a specified threshold in each
band (24.0 for g, 23.6 for r, and 23.0 for z).

3. A crucial step in our detection pipeline is the use of
wavelet transforms with tailored filters to isolate
candidates of different angular scales. When applied to
all MB bricks, this results in a total of 46,374,815
detections, or an average of ∼558 per brick, the vast

majority of which will not be classified as UDG
candidates after further screening.

4. Spurious detections are limited by requiring that a
potential candidate have coincident detections (defined
as center-to-center separations <4″), in at least two of the
three bands, with the resulting group of detections
considered to be located at the mean centroid position.
This requirement rejects all but 7,238,447 wavelet
detections and results in 3,521,143 separate groupings
with an average of ∼42 groups per brick.

5. At this point in our pipeline, the vast majority of
candidates will not survive further screening and, as
described in our earlier work, we limit the number of
detections requiring time-consuming GALFIT (Peng
et al. 2002) modeling by obtaining much faster, rough
parameter estimates using the LEASTSQ function from
the Python SciPy library (Virtanen et al. 2020). Other
than modeling detections on bricks rather than CCDs, our
approach is unchanged from Paper III. Because this is
only used as a coarse screen, we fit an exponential Sérsic
model (n = 1) to each candidate on a brick and require
that the results meet conservative parameter thresholds of
re� 4″ and μ0� 23.0, 22.0 and 21.5 mag arcsec−2 for g,
r, and z, respectively. In a departure from our previous
work, we only require that a candidate successfully meet
these criteria in one of the three bands comprising a brick,
leaving a total of 624,469 detections comprising 499,866
distinct candidates that survive this step. Note that while
changes such as this one will result in differences in the
candidate UDGs between the southern and northern
regions, some differences were unavoidable given the
data quality differences. Nevertheless, we attempt to
homogenize the catalog by evaluating measurement
biases and completeness separately for the southern and
northern surveys.

6. We perform an initial GALFIT screen of each candidate
using a fixed Sérsic index of n = 1, without incorporating
the point-spread function (PSF) into the model. In our
prior work, we allowed GALFIT to generate its own
sigma image, but we now provide one using the publicly
available inverse variance images created by the Legacy
Survey pipeline during coaddition. As in Paper III, we
use generous acceptance thresholds of re� 4″, b/a�
0.34, and μ0,g� 23 mag arcsec−2 or μ0,z� 22 mag
arcsec−2 if there is no available measurement of μ0,g. A
total of 86,746 candidates meet these criteria. Important
details, such as masking, are described fully in
Papers I, II, and III. Here we only note that the masking
removes nearby objects, including any bright source at
the center of the UDG candidate, to avoid the influence of
possible nuclear star clusters in the model fitting. The
central surface brightness that we use throughout our
selection is that inferred from the fitted model, not one
directly measured at the source center.

7. Our final image processing step uses GALFIT with a
variable Sérsic index and an estimate of the PSF to model
the remaining candidates as described in Paper III. We
again use inverse variance images provided by the
Legacy Survey to create the sigma image. In another
departure from our earlier pipeline, we now use their PSF
images to estimate the PSF by taking the median value of
a 7× 7 pixel region centered on the candidate.

7 https://www.legacysurvey.org/dr9/description/#photometry
8 https://public.confluence.arizona.edu/display/UAHPC/Resources
9 https://portal.nersc.gov/cfs/cosmo/data/legacysurvey/dr9/north/coadd/
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When we compare the initial results from our pipeline to
matched DECaLS candidates in the overlapping region, we
find large biases in the structural parameters and z-band
photometry with much smaller differences for photometric
estimates measured in the g and r bands. There are no
significant biases when we reprocess these same candidates
using bricks from DECaLS, indicating that the problem is not
pipeline-related. Other than for re� 10″, where values using
bricks are ∼25% less than those of CCDs, there are no
significant biases in either structural or photometric estimates
when we reprocess these same candidates using bricks from
DECaLS. While some discrepancies, which seem to be
limited to estimates of re at large effective radii, may be
attributable to changes in the pipelines, the vast majority of
the differences appear to be related to the processing of the
MB images. Moreover, when we reprocess images from
single filters using bricks, discrepancies for both re and
photometric properties are isolated to the z-band and become
more significant for the larger candidates. We attribute the
behavior we find to oversubtraction of the background in
DR9 processing of the z-band images of large, low surface
brightness systems.10. The discrepancies in morphological
parameters significantly improve when the z band is omitted
from the stack. Therefore, we proceed without the z-band
images in the stack. However, even with this modification,
estimated effective radii are slightly smaller than those found in
DECaLS. Fewer than 10% of our candidates have re� 10″, and
we do correct for biases using our artificial source simulations,
so we do not expect this modest discrepancy to affect our
conclusions. This comparison highlights the problems inherent
in comparing results from different telescopes using different
pipelines; especially if there is no avenue for assessing relative
biases.

After applying our final criteria of re� 5 3, μ0,g� 24 mag
arcsec−2 (or μ0,z� 23 mag arcsec−2 if GALFIT failed to model
g), b/a� 0.37, and n< 2, we are left with 22,866 candidates
available for further evaluation.

3.2. Screening of Spurious Sources Caused by Cirrus

Large regions of the Legacy Survey footprint are contami-
nated by Galactic cirrus that can result in spurious detections

that may be difficult to differentiate from legitimate UDG
candidates (Figure 2). As in Paper III, we address this problem
by rejecting as probable dust any candidates having single
point values exceeding 0.05 in the τ353 dust map (Planck
Collaboration et al. 2014) or 0.1 MJy sr−1 in the Wide-field
Infrared Survey Explorer (WISE) 12 μm map (Meisner &
Finkbeiner 2014). Using these criteria, we found in Paper III
that 1.7% of the Coma region, ∼43% of the Stripe 82 footprint,
and ∼31% of the entire DECaLS footprint exceeds these
thresholds. As shown in Figure 2, about 22% of MB and 28%
of the entire DR9 footprint are contaminated with cirrus. After
applying the dust criteria to our candidates, a total of 14,388 are
rejected, leaving 8478 in the MB footprint for further analyses.

3.3. Screening of Duplicates

Before further processing, we eliminate duplicate entries,
which we define as candidates lying within 10″ of each other.
We previously accepted the first entry of a group with
duplicates and rejected the remainder. We now select the one
with the smallest separation from the center of the cutout and
reject the others on the assumption that the candidate with
coordinates closest to those provided to GALFIT is the one
most likely to be the desired entry. Because it is possible that
detections separated by 10″ could each represent a legitimate,
distinct candidate, we visually inspected all 10 cases where
separations were between 5″ and 10″ and found none that
contained bona fide separate candidates. Most of the closely
spaced duplicates result from detections of the same object in
different bricks with one or more lying in an overlap region
outside of the main 0.25× 0.25 deg2 brick area. Other causes
include residual artifacts, tidal material, cirrus not rejected by
our dust criteria, background clusters, and in a few cases, large,
probably nearby, candidates that were detected multiple times
during wavelet filtering. Our criterion eliminates 259 potential
candidates, leaving 8219 for further classification.

3.4. Automated Classification

Our approach to computer classification is described in detail
in the appendix of Paper I with modifications addressed in
Paper II. Briefly, we use a convolutional neural network, which
was trained on visually classified cutouts downloaded from the
Legacy Survey in the Stripe 82 and Coma regions. We make no
changes for the current study and use the prior trained network
and weights for classification, resulting in 1415 of the 8219
being designated as UDG candidates. As explained in Paper II,
based on visual inspection we find that objects with g− r
colors >1.0 mag are unlikely to be UDGs and so reject 41 such
objects from further consideration.

3.5. Visual Confirmation

As part of the development of our automated classifier in
Paper II we found from visual examination that about 2.6%
(8/306) of the candidates identified as potential UDGs in a
test set were false positives. Paper III had similar results with
about 2.8% (162/5760) being visually classified as false
positives. We again wish to minimize the effects of false
positives in our current catalog, and authors D.Z. and R.D.
visually reviewed the 1374 remaining candidates in MB.
Each reviewer initially classifies each candidate as a potential
UDG, a false positive, or questionable. Those with disagree-
ments or labeled as questionable are again classified by both

Figure 2. Cirrus contamination within DR9 of the Legacy Survey footprint.
Regions in black exceed our dust proxy thresholds of either 0.1 MJy sr−1 for
WISE 12 μm map or 0.05 for τ353 and comprise ∼28% of the entire footprint.
The Galactic plane is shown in orange.

10 This issue is known among the Legacy Survey team and thought to have
originated from revisions of the processing pipeline for DR9. It is being
addressed (A. Dey 2023, private communication)
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reviewers. This procedure results in both reviewers labeling
1269 as UDG candidates and 80 as false positives with
disagreement on 25. To minimize the number of false or
ambiguous detections in our catalog, we consider any
disagreements to be false positives resulting in 105/1374
(7.6%) being labeled as such. This fraction is almost triple
those found in Papers II and III. We attribute this rise to our
use of the training set drawn from stacked images obtained
from DECaLS and DES, which are much deeper than the
images used in the current study.11 False positives are
mitigated because all candidates are visually confirmed. A
summary of all the screening steps is presented in Table 1.

To the extent that our simulations (Section 3.6) accurately
represent actual UDGs, our estimates of completeness and bias
should help compensate for differences in false negatives
between the MB and DECaLS. Nonetheless, we attempt to
quantify some of the causes of false negatives by investigating
outcomes in the ∼300 deg2 region that overlaps both surveys at
their abutting edges (Figure 1) with results shown in Figure 3.
A total of 79 candidates from the northern and 88 from the
southern contributions to this region made it through our entire
pipeline, including visual confirmation. Of these, 64 were
common to both surveys, leaving 15 (19%) in the northern
portion and 24 (27%) in the southern portion unmatched.

Only a few of the discrepancies resulted from undetected
candidates and none because of visual confirmation. Most of
the candidates not identified by the MzLS/BASS pipeline
failed to meet our UDG criteria during final GALFIT modeling
(Step 7 of Section 3.1). Although 13/16 had re� 4″, these did
not meet our re= 5 3 threshold, and this was the most
common cause of failure. This is not surprising since, as
discussed (Section 3.1), GALFIT estimates of re for the
northern survey tend to be smaller than those in the southern
survey. Although our correction for this bias compensates for
the difference in those surviving our entire pipeline, we still
reject those that do not meet our UDG criteria at that point in
the processing pipeline. About half of the candidates rejected
by our automated classifier were close (>0.9) to the threshold
(0.99) that we use for accepting a candidate (Paper II). Two
candidates in DECaLS were rejected during Sérsic screening,
likely because the individual CCD images processed in that
study are noisier than the coadded bricks used in MzLS/BASS.
This discussion highlights how sensitive membership is to the
fine details of the data quality even when the analysis is done
consistently, particularly near the limits of the selection criteria.

We should not be surprised that a number of UDGs appear or
disappear among different overlapping surveys because of
different selection algorithms. We described similar results in
Papers II and III, where we presented in more detail a
comparison among catalogs from independent surveys. We
recover most candidates in those surveys that satisfy the
SMUDGes selection criteria. For example, when comparing to
an H I-selected sample (Leisman et al. 2017), we recover 39 of
41 sources that match our selection criteria. Although in
general we do find a few discrepancies, we conclude that there
is no evidence for systematic biases among the surveys.

Table 1
Number of Detections and UDG Candidates in MB vs. Processing Step

Process Description in Text Detections UDG Candidates

Wavelet screening Section 3.1, Step 3 46,374,815 N/A
Object matching Section 3.1, Step 4 7,238,447 3,521,143
Sérsic screening Section 3.1, Step 5 624,469 499,866
Initial GALFIT screening Section 3.1, Step 6 N/A 86,746
Final GALFIT screening Section 3.1, Step 7 N/A 22,866
Cirrus screening Section 3.2 N/A 8478
Duplicate removal Section 3.3 N/A 8219
Automated classification Section 3.4 N/A 1415
Color criterion Section 3.4 N/A 1374
Visual Examination Section 3.5 N/A 1269

Figure 3. Top panel: candidates found or missed in MzLS/BASS that are
present in the DECaLS/DES catalog. Bottom panel: candidates found or
missed in DECaLS/DES that are present in the MzLS/BASS catalog.
Detection: inadequate or no wavelet detections (Section 3.1, Step 4); Sérsic:
Failed to meet our Sérsic screening criteria (Section 3.1, Step 6); Galfit1: Failed
our initial GALFIT screen (Section 3.1, Step 8); Galfit2: Failed our final
GALFIT estimates (Section 3.1, Step 9); Classifier: Failed to meet the
probability threshold required by our automated classifier (Section 3.4).

11 https://www.legacysurvey.org/status/
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3.6. Estimating Completeness, Biases, and Uncertainties Using
Simulated UDGs

In Papers II and III we estimated uncertainties and recovery
completeness by planting simulated UDGs at random locations
and separately processing them with the same pipeline as used
for our real sources, including automated classification.
Detailed descriptions and rationales for our approach to
modeling are presented in Paper II with minor modifications
and limitations discussed in Paper III and will not be repeated
here except when needed for clarification. We continue to use
Sérsic profiles with random structural and photometric proper-
ties, but because we now have a smaller footprint, we increase
the initial simulation density from 600 to 1800 deg−2 (∼112
per brick). We further avoid brick overlap regions by restricting
the central locations to only those pixels within the 0.25×
0.25 deg2 defined by the brick. Because we require a separation
of at least 40″ between simulations, the total number created is
7,295,356 for an average of about 88 per brick.

Our basic approach to modeling prevents us from including
the full range of simulation parameter space. We mitigate the
effects of this problem by expanding the thresholds used for
our science candidates and accepting simulations with
22.5< μ0,g< 27.5 mag arcsec−2, 3.5< re< 20″, b/a> 0.25,
and 0.1< n< 2 that also meet our dust and color criteria with
1,098,760 passing automated classification12.

As described in Paper II, all models use the four parameters
that we consider the most appropriate for exploring the variable
under consideration. Completeness and uncertainty estimates
are obtained using polynomial models created with the
PolynomialFeatures function from the Python Scikit-learn
library (Pedregosa et al. 2011) and a four-layer neural network
implemented with Keras.13

3.6.1. Uncertainties

Parameter uncertainties for simulated sources are defined as
the difference between final GALFIT values and the values
used when creating the associated simulations (GALFIT −
input). Because uncertainties are generally asymmetric, we
define the bias as the median difference and the “1σ”
confidence limits as the 15.1th and 84.9th percentiles of the
distribution for a set of similar simulated objects.

Because polynomial models, especially of high order, may
extrapolate very poorly for data points lying outside of the
fitted range, our simulation range for individual parameters
extends beyond those expected for our science targets. As in
Paper III, we further mitigate this problem by using second-
degree polynomial models to fit the simulation data. We
continue to set all position angle, θ, biases to zero in the catalog
because these values are negligible and we want to avoid
adding noise.

3.6.2. Completeness

We define completeness as the probability that a candidate
with given structural and photometric parameters will survive
our entire pipeline. This is assessed using four modeled
parameters (μ0,g, re, b/a, and n) and again uses a second-degree
polynomial to fit the simulation results. We apply bias

corrections to our catalog entries before estimating their
completeness probabilities. Completeness for very large
candidates, primarily in Virgo, was a problem in Paper III
because our model re only extend to 20″; however, no true
candidate in the current study reaches that threshold, so this
issue is not a concern here.

4. The Catalog

As noted in Section 3.5, there are 64 candidates common to
DECaLS and MB. We omit these from the MB sample to avoid
duplicate entries in the final merged catalog, leaving a total of
1310 new entries. Because we want to keep our simulation
pipeline, which did not include visual examination, identical to
our science pipeline, we retain in the catalog, but flag,
candidates that we visually identified as false positives. These
should be omitted from any conclusions drawn from our
results. Descriptions of the catalog entries are presented in
Table 2, and the full catalog is available. Each parameter entry
includes its GALFIT estimate as well as its bias and confidence
limits produced by our models. Any entry that required
extrapolation of the fitted model beyond the range of the
constraints is flagged and should be used with caution
(Section 3.6). Users should apply the bias values by subtracting
those presented in the catalog from the corresponding
uncorrected measurements when drawing conclusions from
the data.
As mentioned in Section 3.1, because of systematic

problems in the northern z-band stacked images, the magni-
tudes in MB tend to be higher than those in DECaLS. This
offset is 0.5 mag and essentially independent of the estimated
magnitude. Entries in the catalog are corrected for this bias by
subtracting 0.5 mag from the GALFIT estimates for magz, and
μ0,z is recalculated from these new values and the structural
parameters assuming a Sérsic profile. Uncertainties and
completeness are estimated from these revised entries. None-
theless, all z-band entries for MB sources should be considered
suspect and while they may be adequate for statistical
conclusions, individual entries should be used with caution.
Parameters are corrected for bias before their completeness

values are estimated. Completeness estimates may be suspect
(Comp_flag ≠ 0) for either of two reasons. The parameters may
be outside of the parameter space defined by our completeness
model, and these have flag= 1. Alternatively, the bias
correction derived from the uncertainty model may be
unreliable, and these have flag= 2. In either case, the results
should be used with caution.
Photometric parameters are not corrected for extinction, but

extinction values are included in the catalog for those wishing
to use them. Our extinction estimates (Ag, Ar, Az) are calculated
using the Sloan Digital Sky Survey g, r, and z Legacy Survey
extinction coefficients14 with E(B – V )SFD estimated using the
dustmaps.py (Green 2018) SFD dust map based on the work of
Schlegel et al. (1998).
We recommend that images be reviewed in any study

drawing conclusions based on individual candidates, particu-
larly if those are extreme in any way (e.g., largest, faintest,
etc.). The sky distribution of the merged SMUDGes catalog is
shown in Figure 4. From now on, we discuss the merged
southern and northern candidate sample.

12 The brighter surface brightness limit was incorrectly quoted as 23.5 mag
arcsec−2 in Paper III. In practice, it was the same as that used here.
13 https://github.com/keras-team/keras

14 https://www.legacysurvey.org/dr9/catalogs/#galactic-extinction-
coefficients
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4.1. Estimating Distances

Because UDGs are defined in terms of physical size, distance
estimates are essential. This presents a challenge for our sample
because it is not exclusive to rich galaxy clusters and groups.
To estimate distances, we apply the distance estimation
technique based on line-of-sight overdensities presented in
Paper III. Additionally, we also assign those candidates
projected onto the Coma, Fornax, and Virgo clusters, the
richest clusters in our survey (Figure 4), the corresponding

distance of the associated cluster. To reprise the former, we
examine the distribution of galaxies with known redshifts
around the line of sight to each UDG candidate, searching for
possible overdensities with which to associate the candidate.
We only include galaxies that are projected within 1.5 Mpc of
the UDG candidate as calculated using the redshift of the
galaxy in question. We assess whether the association with an
overdensity is unambiguous using both a set of fixed criteria
and machine learning. These criteria are described in detail in
Paper III and result in the exclusion of any line of sight with

Table 2
The Complete Catalog

Column Name Description Format

SMDG object name SMDG designator plus coordinates
RA R.A. (J2000.0) decimal degrees
Dec decl. (J2000.0) decimal degrees
r_e effective radius angular (arcseconds)
r_e_upper_uncertainty effective radius 1σ upper uncertainty angular (arcseconds)
r_e_bias effective radius measurement bias angular (arcseconds)
r_e_lower_uncertainty effective radius 1σ lower uncertainty angular (arcseconds)
r_e_flag effective radius uncertainty model flag 0 = good, 1 = extrapolated
AR axis ratio (b/a) unitless
AR_upper_uncertainty axis ratio 1σ upper uncertainty unitless
AR_bias axis ratio measurement bias unitless
AR_lower_uncertainty axis ratio 1σ lower uncertainty unitless
AR_flag axis ratio uncertainty model flag 0 = good, 1 = extrapolated
n Sérsic index unitless
n_upper_uncertainty Sérsic index 1σ upper uncertainty unitless
n_bias Sérsic index measurement bias unitless
n_lower_uncertainty Sérsic index 1σ lower uncertainty unitless
n_flag Sérsic index uncertainty model flag 0 = good, 1 = extrapolated
PA major axis position angle defined to be [−90,90) measured

N to E, in degrees
PA_upper_uncertainty major axis position angle 1σ upper uncertainty degrees
PA_bias major axis position angle measurement bias degrees
PA_lower_uncertainty major axis position angle 1σ lower uncertainty degrees
PA_flag major axis position angle uncertainty model flag 0 = good, 1 = extrapolated
mu0_X central surface brightness in band X (X ≡ g,r,z) AB mag arcsec2

mu0_X_upper_uncertainty central surface brightness 1σ upper uncertainty in band X AB mag arcsec2

mu0_X_bias central surface brightness measurement bias in band X AB mag arcsec2

mu0_X_lower_uncertainty central surface brightness 1σ lower uncertainty in band X AB mag arcsec2

mu0_X_flag central surface brightness uncertainty model flag in band X 0 = good, 1 = extrapolated
mag_X total apparent magnitude in band X AB mag
mag_X_upper_uncertainty total apparent magnitude 1σ upper uncertainty in band X AB mag
mag_X_bias total apparent magnitude measurement bias in band X AB mag
mag_X_lower_uncertainty total apparent magnitude 1σ lower uncertainty in band X AB mag
mag_X_flag total apparent magnitude uncertainty model flag in band X 0 = good, 1 = extrapolated
Rejected rejected based on visual inspection 0 = good, 1 = rejected,

2 = observers disagreed
SFD optical depth at SMDG location from Schlegel et al. (1998) unitless
A_X corresponding extinction at SMDG location in band X AB mag
Comp fractional completeness for similar UDGs unitless
Comp_flag completeness model flag 0 = good, 1 = extrapolated,

2 = biases extrapolated
cz recessional velocity km s−1

cz_type redshift source line-of-sight overdensity (OverDen),
cluster member (specific cluster name),

spectroscopic (specz)
sigma_est estimated internal velocity dispersion km s−1

mass_h_est estimate of log(Mh) log(M/Me)
env_sigma σv of environment km s−1

env_n number of galaxies in environment
source DECaLS (D) or MzLS/BASS (MB)

(This table is available in its entirety in machine-readable form.)
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multiple, independent overdensities that create ambiguity in the
assigned redshift. We exclude objects with estimated cz<
1800 km s−1 so that we can reliably estimate the distance using
its Hubble velocity. In Paper III we demonstrated that the
technique has an accuracy rate of roughly 70% where accuracy
is defined to mean that Δz< 3σz (σz is our estimate of the
redshift uncertainty and corresponds to the velocity width of
the associated line-of-sight galaxy grouping).

Using the complete catalog now available, and a few more
UDGs with spectroscopic redshifts, we confirm (Figure 5) that
this technique results in an accuracy of ∼70% when examining
the SMUDGes candidates with measured redshifts (Kadowaki
et al. 2021). The accuracy is 74% when examining the sample
of H I-selected low surface brightness galaxies from Leisman
et al. (2017). The results obtained for the latter sample show
that the estimated redshift accuracy does not change appreci-
ably when considering H I-rich galaxies, which presumably lie
in lower-density regions. However, in either case, the redshift
estimate yield is < 20% (18 and 13%, respectively), suggesting
that we will only be able to estimate redshifts for a small
fraction of the SMUDGes catalog using this technique and that
the resulting sample may be skewed somewhat to denser-than-
average environments.

To complement this set of estimated redshifts, we assign any
candidate without an estimated redshift and projected within 1,
1.5, and 2.3 Mpc from the Fornax, Virgo, and Coma clusters,
respectively, the redshift of the host cluster. Finally, we include
those candidates with spectroscopic redshifts (replacing any
estimated redshift with the spectroscopic one).

In total, we present redshift estimates for 1525 candidates in
the catalog and confirm as UDGs (re� 1.5 kpc) 585 candidates.
This UDG fraction is not expected to be representative for the
survey because candidates in Virgo and Fornax, which are
numerous and nearby, are far less likely to satisfy the physical
re criterion given our angular size selection. The properties of
these systems are presented in Figure 6. For the bulk of our
candidates, we are unable to recover an estimated cz and
validate them as UDGs. A priority for future research in this
area must be expanding the reach of redshift estimation
techniques. Nevertheless, there are alternative approaches, such
as correlation analyses, that can bring the power of the full
catalog to bear on certain questions (Prole et al. 2019; Greene
et al. 2022; Goto et al. 2023). For the remainder of our
discussion, we limit ourselves to the SMUDGes candidates
with redshift estimates. Our estimates for the recessional
velocities, czest, are included in the catalog, but they are likely
to change in the future as the training sample and methodology
improve.

As with the full catalog itself, we caution that in selecting
samples of unusual objects, the likelihood of catastrophic
failure becomes greater. For example, when selecting large
(re� 4 kpc), blue galaxies, the czest failure rate is closer to 50%
(Table 3). The increase in the failure rate arises because blue
galaxies are less likely to be physically associated with clear
galaxy overdensities, and selecting the largest UDGs, which are
rare, is likely to select for candidates with grossly over-
estimated values of czest. This overestimation is in fact the case

Figure 4. The distribution of candidate UDGs across the sky in R.A. and decl. The right panel is the same as the left except that we have decreased the opacity of each
point to help highlight the higher density regions. We label some well-known local overdensities for reference.

Figure 5. Fractional redshift error vs. physical size. We plot the difference
between the estimated and spectroscopically measured redshifts, divided by the
redshift, as a function of inferred candidate size. The darker points represent
candidates for which the estimate was within 3σ of the measured value, while
those in the lighter symbols represent those for which it was not. The left panel
contains results for SMUDGes candidates with spectroscopic redshifts from the
Kadowaki et al. (2021) compilation and the right panel for HI-selected
ultradiffuse galaxies (HUDs) from Leisman et al. (2017). The shaded area
highlights the region where the candidates are no longer classified as UDGs
due to their small physical size.

Figure 6. Color–magnitude distribution for SMUDGes candidates with
estimated redshifts. In the left panel, we include all candidates with czest and
in the right panel only those that at the estimated distance have re � 1.5 kpc.
The intensity scaling of each bin corresponds to a linear scaling of the number
of objects in the bin, with different normalization in the two panels.
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for the three catastrophic failures (SMDG0031454+024256,
SMDG0200102+284950, and SMDG0806124+153015).

4.2. Estimating Environment

As a byproduct of the distance estimation technique, we have
measurements of both the velocity dispersion of the associated
overdensity and the number of galaxies in the overdensity.
Both of these measurements have significant potential
problems. We derive the velocity dispersion from the small
number of galaxies in the associated group, and it has had the
wings of the distribution trimmed (see Section 5 in Paper III).
The number of galaxies in the overdensity is a strong function
of the depth and completeness of the spectroscopic coverage,
which varies across the sky. Nevertheless, it is reassuring that
in a gross sense the two measurements track each other
(Figure 7).

We use these two measures in concert to provide a broad
guideline regarding the local environment of each UDG
candidate for which a distance is estimated using this
technique. Because of the significant scatter present in
Figure 7, we opt to set joint limits and limit our environmental
designation to solely rich (σv> 500 km s−1 and N� 15) or
poor (σv� 500 km s−1 and N< 15) environments.

4.3. Estimating Masses

We follow the procedure described by Zaritsky & Behroozi
(2023) and applied by Zaritsky (2022) to estimate total masses
for as many of our UDG candidates with estimated distances as
possible. The procedure divides into two steps.

First, we use a galaxy scaling relation to estimate the
velocity dispersion of each galaxy. The scaling relation
connecting re, the surface brightness within re, Ie, and velocity
dispersion, σv across all types of stellar systems has been
discussed extensively in a set of papers (Zaritsky et al.
2006, 2008). Having all but one of these parameters, the last
can be estimated using the relation.

Second, we use the velocity dispersion to estimate the mass
within re, subtract the contribution of baryons within re, and
find the Navarro–Frenk–White (NFW; Navarro et al. 1997)
model that has the corresponding dark matter mass within re.
This estimate we test using globular cluster abundances for six
UDGs. Both of these steps are described in more detail next.

4.3.1. Velocity Dispersion

In Figure 8 we compare our estimated velocity dispersions,
σEST, against spectroscopically measured values for a wide
range of galaxies from the literature (references in Figure
caption), and highlight UDGs (also drawn from published

Table 3
Redshift Comparison for Large Blue UDGs

Name Spectroscopic cz Estimated cz
(km s−1) (km s−1)

SMDG0031454+024256 2377 4683
SMDG0200102+284950 168 4874
SMDG0803340+090730 4412 4619
SMDG0806124+153015 1979 4803
SMDG0915558+295527 7234 6711
SMDG1601538+162909 10,626 10,464

Figure 7. Comparison of two environmental tracers. The velocity dispersion,
σv, and number of galaxies refers to the parameters of the overdensity
associated with an individual UDG candidate. We show the results for all lines
of sight, regardless of whether we accepted the estimated redshift. The two
quantities track each other as expected, although with large scatter. Because of
the large scatter, we choose to define the low-density environment as satisfying
both σv � 500 km s−1 and N < 15, and the high-density environment as
satisfying both σv > 500 km s−1 and N � 15. The selected regions are shaded
and labeled.

Figure 8. Comparison of estimated velocity dispersions of dispersion
supported galaxies of various masses to the spectroscopically measured values
(Jorgensen et al. 1996; Geha et al. 2003; Chilingarian et al. 2008; Mieske
et al. 2008; Collins et al. 2014). Twenty UDGs with velocity dispersion
measurements from the literature (Beasley et al. 2016; van Dokkum et al. 2017;
Toloba et al. 2018; Chilingarian et al. 2019; Martín-Navarro et al. 2019; van
Dokkum et al. 2019b; Forbes et al. 2021; Gannon et al. 2022) are highlighted
with larger, open red circles. The dispersion about the 1:1 line for UDGs
corresponds to a velocity dispersion scatter of 11 km s−1.
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data). We use the empirically determined coefficients for the
scaling relation given in Zaritsky & Behroozi (2023). With
larger spectroscopic data sets, these coefficients should be
further refined, particularly to better constrain the relationship
in the region of parameter space populated by UDGs.

The UDGs follow the general trend on the 1:1 line and do
not exhibit larger scatter than other galaxies of similar velocity
dispersion. The rms scatter for the UDGs corresponds to 11 km
s−1, roughly a 2 increase over the typical quoted uncertainty
in the spectroscopic measurements, suggesting the estimated
values have comparable precision to the spectroscopic ones.
We propose that 11 km s−1 is a rough upper limit on the 1σ
uncertainty of our velocity dispersion estimates. Of course,
estimates have the potential for catastrophic errors and should
always be treated with caution. We will return to this issue
later, but the two UDGs with the lowest observed velocity
dispersions suggest that the empirical relationship may be
breaking down for low-velocity dispersion UDGs. We proceed
to calculate σEST for every UDG candidate in the catalog with
an estimated redshift. These estimates are included in the
catalog but should be treated with caution and await further
confirmation.

4.3.2. Modeling Total Masses

We estimate total masses by adopting an underlying NFW
potential, determining the total mass within re using the Wolf
mass estimator (Wolf et al. 2010), subtracting the stellar mass
using a color dependent stellar mass-to-light ratio (Roediger &
Courteau 2015) within re

15, and finding the NFW profile that
best matches the residual mass within re. This approach
assumes that all of the baryons within re are in stars and that
there is no adiabatic contraction of the halo due to the baryons.
To help satisfy the latter assumption, we apply the method only
to systems where the dark matter mass fraction within re is at
least 50%. This effectively limits the technique to dwarf
galaxies. Nevertheless, even if the original underlying potential
was NFW-like, baryonic effects other than contraction, such as
feedback, could also affect the shape of the potential (Sawala
et al. 2013). Even so, there is yet no compelling argument that
NFW potentials are inappropriate for UDGs (Sales et al. 2020),
but whether this is an accurate assumption remains an open
question.

There are limited ways to test the results of the method,
including the assumption of the NFW profile, in galaxies in
general—and even fewer in UDGs. We will use the relation-
ship between the number of globular clusters, NGC, (or the total
mass of the globular cluster population, which for a universal
luminosity function is directly related to the number) and total
galaxy mass, Mh, that is now well established for the general
galaxy population (Blakeslee et al. 1997; Spitler & Forbes
2009; Georgiev et al. 2010; Harris et al. 2013, 2017; Hudson
et al. 2014; Forbes et al. 2016, 2018; Burkert & Forbes 2020;
Zaritsky 2022). The relationship has already been assumed to
hold for UDGs and used to estimate the total mass of
many individual UDGs (e.g., Beasley & Trujillo 2016; Peng
& Lim 2016; Amorisco et al. 2018).

In Figure 9 we compare NGC for a sample of six well-
characterized UDGs (Saifollahi et al. 2022) and our estimates
of Mh. The line plotted in the Figure is the relation obtained
from the general galaxy population, Mh= (5× 109 Me)NGC

(Burkert & Forbes 2020). If the published relation is taken as
being correct, then our Mh estimates are underestimates of the
total mass by ∼15% on average and have a scatter of ∼25%. If
this evaluation of the accuracy and precision of the method is
even close to being correct, it suggests that the method provides
an exciting way forward to estimate masses for large numbers
of low-mass galaxies, including UDGs. We present in the
catalog our estimates for Mh for the subset of 1436 UDG
candidates where we can proceed with the calculation.
We chose to focus the NGC–Mh comparison on the Saifollahi

et al. (2022) sample because NGC is based on deep HST
imaging and a uniform treatment of selection and completeness
corrections across the sample. However, a similar comparison
has catastrophic failures when one considers a broader set of
measurements. First, the two UDGs associated with NGC 1052
that have little or no apparent dark matter within re (van
Dokkum et al. 2018a, 2019a) are clear outliers in this relation,
independent of the mass estimation approach (van Dokkum
et al. 2018b). They have substantial globular cluster popula-
tions but a low total mass. Although a variety of formation
scenarios have been proposed for these systems, some are
sufficiently fine-tuned (e.g., van Dokkum et al. 2022) to
suggest that such objects should be exceedingly rare across the
entire SMUDGes sample.
Also concerning is the case of NGC 5846 UDG1 (Forbes

et al. 2019), although any one object may not be representative.
Based on ground-based imaging, the galaxy appears to have a
bountiful GC population (17 clusters initially identified,
completeness corrections would more than double that number;

Figure 9. The relationship between the number of globular clusters and total
mass. The number of globular clusters comes from Saifollahi et al. (2022) and
the masses come from our estimates. The dashed line is not a fit but rather the
published relation from Burkert & Forbes (2020). The comparison indicates a
modest offset and acceptable precision for our estimated masses (mean offset
from the relation is 15%, and the scatter corresponds to an uncertainty in the
mass of 25%). However, as detailed in the text, some exceptions to this
behavior are known from other studies.

15 See Du et al. (2020) for an extensive discussion of mass-to-light ratios for
low surface brightness galaxies. Although there are a variety of uncertainties,
they do not identify any gross difference between the mass-to-light ratio versus
color relations for low and high surface brightness galaxies. Any possible
differences are also mitigated by our study of galaxies where the stellar
contribution to the mass within re is subdominant.
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Forbes et al. 2021), with 11 now spectroscopically confirmed
(Müller et al. 2020). Using the scaling relation and the
structural parameters presented by Forbes et al. (2019), we
obtain σEST= 23 km s−1, in agreement with the published
spectroscopic measurement, σv= 17± 2 km s−1 (Forbes et al.
2021). However, our subsequent estimate of the total mass is
only 1.7× 1010 Me in comparison to their estimate, based on
NGC, of ∼2× 1011 Me. This is a factor of 10 discrepant,
suggesting NGC would need to be ∼10 times smaller for us to
place the galaxy on the relationship in Figure 9. There seems to
be little room for observational error at this level. Subsequent
HST observations (Müller et al. 2021; Danieli et al. 2022)
confirm the large number of globular clusters, and adopting a
subsequent measurement of σv using globular clusters
( 9.4v 5.4

7.0s = -
+ km s−1; Müller et al. 2020) would make the

discrepancy even worse because it lowers the inferred
dynamical mass.

An alternative interpretation was suggested by Forbes et al.
(2021) because they too found a conflict between the mass
within re and the total mass. They suggest that the dark matter
potential may be cored. If this is true, we would be
underestimating the total mass by fitting an NFW model.
Determining whether such discrepancies are common or
isolated may be a way to learn about the dark matter potentials
of these systems. We cannot make further progress here, but
more careful study of the population of GC-rich low surface
brightness galaxies is essential.

5. Star Formation Efficiencies

We now address whether the integrated star formation
efficiency of UDGs is different than that of galaxies of similar
total masses. We move forward with some trepidation given the
chain of steps required to estimate masses, but are hopeful that
in the mean the masses are sufficiently accurate. Confirming
this assertion is a priority for future work but we also discuss
below why we do not anticipate qualitative changes in the
results.

In Figure 10 we compare the stellar mass–halo mass
(SMHM) relation for UDGs and other smaller low surface
brightness galaxies in SMUDGes to the mean relation found
using the same approach for the general dwarf galaxy
population (Zaritsky & Behroozi 2023). The UDGs are offset
from the mean relation in the sense that they are star-deficient
at a given Mh. The magnitude of the effect is largest for those
with the largest size or Mh. As we consider galaxies with lower
values of Mh, the SMUDGes sources eventually merge onto the
mean relation. On average, the offset for UDGs with
9.73< log(Mh/Me)< 10.7 (the shaded region in Figure 10)
is 0.61± 0.02 dex (a factor of ∼4), but for the most-massive
UDGs, the integrated star formation efficiency is roughly an
order of magnitude lower than for the general galaxy
population. Over the full mass range of UDGs, we find an
average factor of 7 deficiency. The range of Mh we find for
UDGs, 1010<Mh/Me< 1011.5, is mostly in line with certain
theoretical expectations (1010−1011 Me; Di Cintio et al. 2017;
Rong et al. 2017) and consistent with limits from gravitational
lensing (Sifón et al. 2018), providing some further encourage-
ment for our mass estimates.

In the same figure we also plot the sample of UDGs that we
used in Figure 5 to test the velocity dispersion estimates. Here
we use the spectroscopic velocity dispersion measurements and
the independent values of re, distance, and magnitudes

provided by the source references and derive Mh as we do
for our sample. Despite the fact that this is a much smaller
sample and mean trends are more difficult to quantify, these
points also preferentially fall below the fiducial SMHM
relation. The offset within the shaded region in Figure 10 is
not quite as large as for the SMUDGes sample in the same
mass range (mean offset is 0.22± 0.10 dex, a factor of ∼1.7
deficient in stars in comparison to a factor of 4). We defined the
shaded region to maximize the overlap between our sample and
the literature sample in Mh and provide a fair baseline for
comparison. For the entire literature sample, we find an average
offset of 0.29± 0.10 dex.
An alternate interpretation, if one posits that galaxies have

the same mean stellar to dark matter mass ratio, is that the dark
matter profiles differ systematically between ‘normal’ galaxies
and UDGs in this mass range, such that we are incorrectly
estimating the masses for at least one of these two types of
galaxies. However, the sense of the difference is that the UDGs
would have to have a more concentrated dark matter profile
than the normal galaxies, a trend which seems at odds with
their larger sizes. We prefer the interpretation that the star
formation efficiencies differ.
Although the results from our sample and the literature

sample both suggest a deficit of stars in UDGs, the quantitative
results disagree, suggesting the presence of systematic
uncertainties. On our side of the equation, we face potential

Figure 10. The SMHM relation for SMUDGes sources. The red, filled symbols
represent UDGs (re � 1.5 kpc), which correspond closely to a cut in Mh. The
lighter colored points represent the SMUDGes that do not meet the UDG size
criterion. The solid line represents the mean relation for a wide set of dwarf
galaxies drawn from the literature (Zaritsky & Behroozi 2023). The dotted lines
represent a decrease in the stellar mass by factors of 2 and 10. The large
unfilled dark circles represent the results for a sample of UDGs with
spectroscopically measured velocity dispersions and independent photometry.
The shaded region highlights the range ofMh where we compare the samples in
the text. The lines in the inset represent how an individual galaxy will move
with a 10% and 100% error in the distance. Small errors move points along the
published relation but significantly overestimating the distance moves points in
the direction populated by the largest UDGs. The UDGs are relatively
inefficient integrated star-forming galaxies at a given Mh. At a quantitative
level, the results await further validation of the methodology for estimating σv
and Mh.
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systematics in the estimation of the distances and velocity
dispersions. We expect that 30% of the sample has incorrect
distances (Section 4.1) and know that distance errors tend to
scatter sources at an angle to the fiducial SMHM relation that is
consistent with that seen in Figure 10 (Zaritsky & Behroozi
2023). Furthermore, systematic differences in re measurements
among samples can lead to offset differences. For example, if
we reduce our measurements of re by 30%, we decrease the
measured offset to our fiducial SMHM to 0.41± 0.02 dex,
which is now roughly only 2σ discrepant with the literature
value. On the literature side of the equation, observational
biases (spectroscopy is most likely to succeed for UDGs with
higher surface brightnesses or for star-forming UDGs exhibit-
ing emission lines) could lead to unrepresentative samples that
favor systems with higher relative stellar masses. Given the
uncertainties in this discussion, we broadly claim that the stellar
deficiency lies somewhere between a factor of 1.5–4 in the
mass range of the comparison and 1.5–7 for the full UDG mass
range.

There are various possible causes for the relative low
integrated star formation efficiency in UDGs within the
existing set of formation scenarios. For example, gas stripping
would naturally lead to less star formation over the lifetime of
the galaxy, and a high specific angular momentum could halt
some gas from collapsing and reaching the densities required
for star formation. The one set of models that can be excluded
by this result is the set that explain UDGs solely by
redistributing the stars to larger radii at late times. However,
most models that invoke dynamical interactions as a key
component of dwarf galaxy evolution suggest that a redis-
tribution of stars occurs in conjunction with the loss of stars
from the system (e.g., Peñarrubia et al. 2008; Tomozeiu et al.
2016; Carleton et al. 2019).

The most extreme offsets are at the largest masses. The
estimates of Mh can surely be incorrect, but appear unlikely to
be overestimated by a factor of 10. The agreement between the
estimated and measured velocity dispersions shown in Figure 8
suggests that there is no large overall bias in the dispersion
estimates, eliminating this specific issue as a concern. As
mentioned previously, on further examination of Figure 8, there
is some concern about a possible systematic failure of our
dispersion estimates for log σv< 1.25, but this is not the regime
of the most-massive UDGs, and the dispersion estimates agree
well with measurements above log σv= 1.25. The previous
discussion regarding NGC and the extrapolated total masses
suggests similar concurrence with independent estimates
(Figure 9).

Another concern is the effect of distance errors, which
propagate into both M* and Mh. We show in Figure 10 the
direction and amplitude of shifts due to 10% and 100%
distance errors. For small errors, the points slide basically along
the direction of the published relation and do not result in
offsets from it. However, as the errors grow, the shift pushes
the data away from the published relation in a manner
consistent with what we find if many of our distances are
gross overestimates. Of course, 100% errors fall into the
category of catastrophic distance errors, and we only expect
such errors for 30% the sample. If we remove the 30% of
UDGs with the largest masses, the largest remaining UDG still
has Mh> 1011 Me. For this mass, the offset from the fiducial
SMHM relation is still about an order of magnitude. However,
such errors may explain why there is a difference in the mean

offset between the full sample and that composed of galaxies
with spectroscopic distances and σv.
We could also be overestimating masses if the adopted

potential profile is incorrect. However, by selecting a cuspy
profile, NFW, we are likely to underestimate rather than
overestimate the mass, as may indeed be the case for NGC
5846 UDG1. There are ways to contaminate the mass
estimates, such as with the presence of a central massive black
hole, but that contamination would have to be systemic and
different in a relative sense to what is occurring in galaxies of
similar stellar mass. Citing Occam’s razor, we conclude that
UDGs are the relative star-deficient tail of the galaxy
distribution at the corresponding values of Mh. This does not
exclude the possibility that they are also the physically large
tail of the population and that those two aspects are physically
related.
As a test of the effect of interactions and the role of local

environment, we present the SMHM relation of UDGs
separately for those in rich and poor environments as defined in
Section 4.2 in Figure 11. There is no clear distinction between
the two populations. Of course, absence of evidence is not
evidence of absence. For example, the outer portions of the
dark matter halo could have been stripped away in the subset of
UDGs in high-density environments, and any gas reservoir may
have been tidally or ram pressure stripped as well. Neither of
these events would necessarily show up in our comparison.
What the agreement between the two SMHM relations does
demonstrate is that environment has not affected the structure
within re sufficiently to differentially affect our estimates of σv
and Mh. As such, we interpret the agreement to mean that
dynamical processes are unlikely to affect re and hence to be
directly related to the creation of UDGs. This conclusion is
independently supported by the near linearity of the NUDG

versus the halo mass relation from 1012–1015 Me (e.g.,

Figure 11. The SMHM relation for UDGs in poor and rich environments. The
solid circles represent those UDGs in rich environments, and open circles
represent those in poor ones, with environment defined as described in the text.
The solid line represents the mean relation for the general population from
Zaritsky & Behroozi (2023). The dotted lines represent a decrease in the stellar
mass by factors of 2 and 10. The uncertainties due to distance errors are as
shown in Figure 10.
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Karunakaran & Zaritsky 2023), although we again stress that
given the likely heterogeneous nature of the UDG populations,
models that produce a variety of UDGs (e.g., Sales et al. 2020)
may have enough flexibility to match these disparate observa-
tions. Our results at least present empirical benchmarks against
which to test such models.

To assess whether UDGs are both star-deficient and
“puffier,” we compare the ratio of stellar to total mass within
re, M*,e/Me, and within the virial radius, M*/Mh, for UDGs
and the general galaxy population over a limited range of Mh

(10<Mh/Me< 11.5). If UDGs are simply deficient in stars
but have no structural differences, then these ratios should
change by the same factor within re and r200. We present that
comparison in Figure 12.

The distributions of M*,e/Me and M*/Mh are quite similar,
and that impression is confirmed in the third panel, which plots
the ratio of the value at re to that at rh for the two galaxy
populations. The UDG population does not exhibit signifi-
cantly different behavior, suggesting that size differences in the
stellar component are not a primary factor. In fact, the ratio
peaks at slightly smaller values for the general population,
probably due to the larger relative contribution of the stellar
mass within re in the general galaxy population. We conclude
that whatever processes are involved in forming a UDG, they
lead primarily to a decrease in the integrated star formation rate
in galaxies of comparable total mass.

6. Summary

In this last of the SMUDGes catalog papers, we present the
full UDG candidate catalog drawn from the Legacy Survey
DR9 release (Dey et al. 2019) following our described
procedure and selection. The catalog contains 7070 candidates
with μ0,g� 24 mag arcsec−2 and re� 5.3″ as measured using
single Sérsic models and our particular masking algorithms.
After visual examination, we consider 265 of these to be poor
candidates and flag them as such. Using the parameters of each
candidate, we estimate and tabulate the completeness fraction
across the full survey for similar galaxies using artificial source
simulations. The catalog is highly incomplete for sources with
re 20″ due to our choice of filtering. The mean overall

completeness for galaxies like those already in the catalog is
close to 50%.
We estimate and tabulate distances for a subsample of 1525

candidates using the distance-by-association technique
described in Paper III, associating candidates projected onto
the Coma, Fornax, and Virgo clusters with those clusters, and
using the Kadowaki et al. (2021) compilation of spectroscopic
redshifts. Because of the overrepresentation of Virgo and
Fornax galaxies in this list, the fraction of UDGs (re� 1.5 kpc)
in this list is small (40%) resulting in a total of 585 UDGs, but
they are distributed across the sky. They have total magnitudes
typically in the range −17Mr − 14 and are typically red,
g− r∼ 0.6, although there is a blue population that extends
to g− r∼ 0.1.
We estimate and tabulate total masses, Mh, using an

approach presented by Zaritsky & Behroozi (2023). Although
the approach is speculative for UDGs and needs further
validation, it provides a way forward at the current time. It
provides accurate (to within 25%) mass estimates in compar-
ison to those from the number of globular clusters for a sample
of six UDGs (Saifollahi et al. 2022). We find that UDGs have
total masses in the range of 1010Mh/Me 1011.5. Compar-
ing the SMHM relation of UDGs to that of the general
population over the same range of Mh from Zaritsky &
Behroozi (2023), we find that UDGs are increasingly star-
deficient with increasing Mh. The average deficit of stars varies
as a function of galaxy size and total mass and likely lies
somewhere between a factor 1.5 and 7 for the UDG sample as a
whole.
We conclude that whatever processes are involved in

forming UDGs, they do not simply reorganize the stars to
larger radii but instead result in a measurable decrease, up to an
order of magnitude, in the integrated star formation rates
relative to other galaxies of the same total mass
(1010<Mh/Me < 1011.5). This deficiency does not have a
detectable environmental dependence.
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