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ABSTRACT

Context. Apertif is a multi-beam receiver system for the Westerbork Synthesis Radio Telescope that operates at 1.1–1.5 GHz, which
overlaps with various radio services, resulting in contamination of astronomical signals with radio-frequency interference (RFI).
Aims. We analyse approaches to mitigate Apertif interference and design an automated detection procedure for its imaging mode.
Using this approach, we present long-term RFI detection results of over 300 Apertif observations.
Methods. Our approach is based on the AOFlagger detection approach. We introduce several new features, including ways to deal with
ranges of invalid data (e.g. caused by shadowing) in both the SumThreshold and scale-invariant rank operator steps; pre-calibration
bandpass calibration; auto-correlation flagging; and HI flagging avoidance. These methods have been implemented in a new framework
that uses the Lua language for scripting, which is new in AOFlagger version 3.
Results. Our approach removes RFI fully automatically, and it is robust and effective enough for further calibration and (continuum)
imaging of these data. The analysis of 304 observations shows an average of 11.1% of lost data due to RFI with a large spread. We
observe 14.6% RFI in auto-correlations. Computationally, AOFlagger achieves a throughput of 370 MB/s on a single computing node.
Compared to published machine learning results, the method is one to two orders of magnitude faster.

Key words. instrumentation: interferometers – methods: observational – techniques: interferometric – surveys –
radio continuum: general

1. Introduction

The technical advancement of mankind is driving an increase in
man-made radio-frequency transmitters, both terrestrial and in
space. This increases the challenge for radio astronomical studies
that try to detect sky signals that are many orders of magnitude
fainter than man-made transmissions. Now that radio-astronomy
is evolving into a science where it is the norm to measure data
volumes in petabytes, mitigation of radio-frequency interference
(RFI) needs to be computationally efficient and fully automated.

Apertif is a receiver system upgrade for the Westerbork Syn-
thesis Radio Telescope (WSRT) that makes use of phased-array
feeds to allow for 40 simultaneous adjacent beams on the sky
(Van Cappellen et al. 2022). Observations are performed at a
central frequency of 1280 or 1370 MHz with an instantaneous
bandwidth of 300 MHz.

The data volume produced by Apertif is considerable.
Voltages from the 12 dishes with Apertif receivers are corre-
lated for all beams, typically integrated for 30 s and recorded
with four polarizations. The bandwidth of 300 MHz is split into

384 sub-bands, each with 64 channels of 12.2 kHz. Because of
the large bandwidth, it overlaps with various services, includ-
ing GPS and air-traffic communications. Although the WSRT
resides in a radio protected zone, it is not shielded from satellites
or air-traffic. Moreover, starting in 2020, 5G transmissions have
made use of the 1452–1492 MHz bandwidth. For these reasons,
Apertif requires an efficient approach to deal with RFI. Due to
the large amount of data, such an approach has to work fully
automatically.

The most common method to deal with RFI is to detect
data samples that have a significant contribution of RFI and
ignore affected data in the processing (e.g. Winkel et al. 2006;
Middelberg 2006; Offringa et al. 2010a; Prasad & Chengalur
2012; Peck & Fenech 2013; Yang et al. 2020; Sun et al. 2022).
This process is referred to as data flagging, and is also our
method of choice for dealing with RFI in Apertif data in this
work. Our detection methodology builds upon the RFI detection
pipelines for the Low-Frequency Array (LOFAR; Van Haarlem
et al. 2013; Offringa et al. 2010b) and the Murchison Wide-
field Array (MWA; Tingay et al. 2013; Offringa et al. 2015).
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Fig. 1. Default AOFLAGGER strategy for RFI detection (before modifications for Apertif). These steps were independently performed on smaller
subsets of the data. The input data of one independent run through these steps typically consists of approximately an hour of correlations from a
single pair of antennas and a single beam, with the full bandwidth and all four linearly polarized cross correlations present.

Those pipelines integrate an AOFLAGGER flagging strategy,
which combines filtering, sumthresholding, morphological oper-
ations, and heuristics. Details of the AOFLAGGER approach are
discussed in Sect. 2.1.

Apertif supports a transient (beam-formed) mode and an
imaging mode. The RFI detection approach for these two modes
are fundamentally different. In this work we aim at an RFI
detection in imaging mode, that is, after having correlated and
integrated the voltages from all the antennas. Readers can refer
to Sclocco et al. (2019) for an approach to mitigate RFI in beam-
forming mode. Our approach is part of a fully automated Apertif
imaging pipeline called APERCAL (Adebahr et al. 2022).

A multi-beam receiver makes it possible to perform spatial
filtering techniques to suppress interference (Kocz et al. 2010,
2012; Hellbourg et al. 2014). This requires fast dedicated com-
puting hardware that processes the raw signals from all the
beams, which for Apertif is not available. Spatial filtering is also
mainly used to filter out a limited number of known transmit-
ters, which for Apertif is likely not sufficient by itself, although
it might save some part of the bandwidth.

Another approach to detect interference is by using the spec-
tral kurtosis statistic (Gary et al. 2010; Taylor et al. 2019; Purver
et al. 2021). This has shown results that are competitive with
amplitude-based detection. However, this requires a specialized
correlator and doubling the data volume to be able to calculate
the kurtosis.

Recently, machine learning has been used to address the
issue of RFI detection (Harrison & Mishra 2019; Yang et al.
2020; Xiao et al. 2022; Sun et al. 2022). Yang et al. (2020) argue
that convolutional neural networks can achieve an accuracy
that is higher than that of their SUMTHRESHOLD implementa-
tion. For this comparison, the authors use their own customized
implementation of the SUMTHRESHOLD method, whereas in
platforms such as AOFLAGGER the method is typically applied
iteratively and combined with filters (Offringa et al. 2010a,b) and
morphological operators (Offringa et al. 2012; Van de Gronde
et al. 2016) to enhance the accuracy. With these additions, it
has been shown that pipelines such as AOFLAGGER typically
detect all interference that astronomers would manually flag. In
this work, we showcase what can be achieved with traditional
methods – including their computational requirements – thereby
providing an updated baseline to compare against.

In this paper, we introduce a flagging strategy for Aper-
tif data using the AOFlagger framework, and demonstrate our

designed strategy on Apertif data. In Sect. 2, we start by
introducing the AOFlagger steps used to construct the Apertif
approach, and introduce several new operations that are inte-
grated into the Apertif flagging strategy. In Sect. 3, results of
applying this strategy are presented, including long-term statis-
tics and the computational requirements. Finally, in Sect. 4 we
discuss the results and draw conclusions.

2. Method

For this work, we have designed an interference detec-
tion approach for Apertif based on the existing AOFLAGGER
approach and integrated this into the APERCAL pipeline. APER-
CAL is an automated processing pipeline for Apertif imaging
observations (Adebahr et al. 2022), consisting of common steps
such as data formatting, interference detection, calibration and
imaging. Interference detection is one of the first steps dur-
ing data reduction and is fundamental for achieving a good
and persistent calibration and image quality and later steps of
the processing.

To improve the detection quality, several modifications to
AOFLAGGER are required. This consists of extensions of existing
algorithms and optimizing parameters for APERTIF, which we
subsequently discuss in this section. We start with an overview
of the detection approach.

2.1. Overview

Figure 1 shows an overview of the steps that the default AOFLAG-
GER strategy performs. The AOFLAGGER approach to RFI
detection in a subset can be summarized as (i) estimation and
subtraction of the sky signal by applying a Gaussian high-pass
filter in time-frequency space (see Sect. 2.5); and (ii) detection
of excessive values, with increased sensitivity towards spectral-
lines and broadband features. The detection is performed with
the SUMTHRESHOLD algorithm (Offringa et al. 2010a). Steps i)
and ii) are typically iterated three times with increased sensitiv-
ity to make sure that the final sky signal estimate is minimally
biased by interference. As a final step, the flags from different
polarizations are combined and are extended in time and fre-
quency, using the scale-invariant rank (SIR) operator (Offringa
et al. 2012; Van de Gronde et al. 2016). This latter step improves
detection of interference that tapers off below the noise floor and
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fills gaps in the flag mask when a persistent transmitter is not
fully detected.

With AOFLAGGER, detection of interference is performed
independently on subsets of the data, and the pipeline of Fig. 1
runs independently for each subset. For Apertif, such a subset
was chosen to contain the data from all four linearly polarized
correlations (XX, XY, YX, YY), the full bandwidth (300 MHz),
an interval of typically half an hour for a single beam and a sin-
gle correlated baseline. Hence, the detection of interference for
different beams, baselines and time intervals is independently
performed, even though these are part of the same observa-
tion. The motivation for flagging these subsets independently
is two fold: (i) It improves performance, as it allows parallel
and distributed detection of subsets. The independent flagging
of beams and time intervals matches with the format of the
data. Despite this, data access is still not ideal, because the data
for one baseline is stored dispersed over the time direction; (ii)
Combined detection does not significantly improve detection, as
the added value of detection on combined subsets of data is
small, that is, one subset contains little information about the
RFI in another subset. This is because the impact of RFI can vary
greatly between different beams and different baselines. Further-
more, it rarely occurs that RFI which affects image quality is not
detectable in half an hour of data, but is detectable when multiple
half hour intervals are combined.

Performing detection on integrated baselines has, in some
cases, been shown to make faint RFI detectable (Offringa et al.
2015; Wilensky et al. 2019). Early tests with Apertif data, how-
ever, indicated that there is no gain in combining baselines. We
have also performed tests that flag after integrating over multiple
beams, but again found no improvement in doing so. These tests
were not exhaustive and it could be that combined detection on
baselines or beams could still improve the accuracy somewhat.

AOFLAGGER aims to take out RFI that requires raw, high-
resolution data flagging. Because of the high resolution of
processed data, the computational performance of detection is
critical. It is important to perform high-resolution flagging early,
because it results in the highest accuracy and the impact of flag-
ging is reduced compared to low-resolution flagging (Offringa
et al. 2013). On the other hand, some phenomena cause the loss
of large time intervals or frequency ranges. Common instru-
mental causes are correlator failures, temporary local RFI, or
strong broadband transmitters. Detection of such issues does not
require the high-resolution data, and it is therefore less critical
to detect such issues in the first AOFLAGGER detection run. Such
issues can be found in post-processing of lower-resolution data
for which the performance is less critical.

2.2. Invalid data

There are several instrumental issues that may result in data with
invalid values that interrupt the data in time or frequency. A few
examples of such issues are correlator malfunctions, dish shad-
owing, incorrectly set sub-band gains, network failures (between
stations and the correlator) or data corruption. Such instrumen-
tal issues result in visibilities that may have non-physical values
for certain times, frequencies, feeds or antennas, or could lead
to visibilities with a not-a-number (NaN) value. We refer to such
data as invalid data.

In most cases, invalid data can be detected and flagged early
in the processing. For example, shadowing can be determined
from the target direction and the layout of the array, and missing
sub-band data caused by network congestion can be detected by
the correlator. In this paper, we consider the detection of such

issues outside the context of interference detection. It does, how-
ever, make it necessary for the detector to continue to work in the
presence of (pre-detected) invalid data, which may affect only
specific times, frequencies or some other selection of data.

Making the AOFLAGGER algorithm aware of invalid data
is one of the changes that was required for Apertif. The
AOFLAGGER algorithm was originally designed to work on raw
high-resolution single-subband LOFAR data. It rarely happens
that such a span of data is partially invalid, and initially AOFLAG-
GER algorithms therefore do not take invalid data into account. In
the case of Apertif, the full bandwidth is offered to AOFLAGGER,
and the loss or corruption of a single subband causes therefore
gaps in the bandwidth. Being a different instrument, Apertif is
also affected by different issues that may not affect LOFAR,
such as shadowing. For these reasons, we have extended the
AOFLAGGER algorithm to take invalid data into account. This
requires changes to the SUMTHRESHOLD and SIR-OPERATOR
steps of the algorithm, which we subsequently discuss in the next
two sections.

2.3. Extension of the SUMTHRESHOLD algorithm

The SUMTHRESHOLD algorithm is a combinatorial threshold-
ing method that detects line-like structures in the time-frequency
data (Offringa et al. 2010a). This method is effective for the
detection of RFI, because most RFI raises the amplitude of
consecutive time or frequency samples. The method iteratively
thresholds the average over an increasing number of neighbour-
ing samples with a decreasing threshold. With i the zero-indexed
iteration number, Mi the number of samples, χi the threshold and
ρ a constant normally chosen to be 1.5,

Mi = 2i (1)
χi = χ0 ρ

− log2 Mi . (2)

We note that χ0 is a user parameter that controls the total
sensitivity of the method. The various default AOFLAGGER algo-
rithms use values of χ0 = 6. . . 8.5σ. The mode of the noise
σ is determined from the data that is (at that point in the
detection) determined to be RFI free, and is estimated by cal-
culating the truncated mode of the RFI free data, skipping 20%
of the outlier values (the 10% minimum and maximum values),
thereby assuming that the inner 80% follow a Rayleigh distri-
bution. Assuming that the contribution of the noise is Gaussian
distributed in the real and imaginary components of the visibil-
ities, this results in a stable estimate of its standard deviation
(Fridman 2008).

A single iteration consists of thresholding all sequences of
size Mi in both the time and the frequency direction (unless Mi =
1), possibly with different thresholds for the two dimensions, to
separately control the sensitivity towards spectral line RFI and
transient broadband RFI. Typically, a total of 9 of these iterations
are performed, giving a maximum size of M8 = 256. A sample
that is flagged in an earlier iteration or direction, is (temporarily)
replaced by the mean of the non-flagged samples in the sequence.
The following description demonstrates the first three iterations,
using χ0 = 6 and ρ = 1.5:
1. Flag samples with an absolute value ≥ 6σ.
2.(a) Flag every sequence of 2 consecutive samples in time

with an absolute average ≥4σ (because χ2 = 6σ ×
1.5− log2(22) = 4σ).

(b) Flag every sequence of 2 consecutive samples in fre-
quency with an absolute average ≥ 4σ.
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Fig. 2. Three methods of handling invalid data in the SUMTHRESHOLD step. The top image shows the simulated input data, which consists of
Gaussian complex noise, spectral line RFI every 10 channels that increases in strength in frequency direction, and a block of invalid data (time
indices 50–100), simulating e.g. a temporary correlator failure. The bottom images show a zoom in on the left edge of the invalid data. Flagged
data is marked in yellow. Bottom-left: normal SUMTHRESHOLD without using knowledge of the invalid data; bottom-centre: invalid samples are
set to zero before SUMTHRESHOLD; bottom-right: invalid samples are removed before SUMTHRESHOLD.

3. Repeat 2.(a) and (b) with 4 samples and a threshold of χ4 =

6σ × 1.5− log2(23) = 2 2
3σ.

Subsequent iterations will threshold sequences of 8, 16, 32, . . .
samples with an average above χ8 ≈ 1.8σ, χ16 ≈ 1.2σ, etc.

In the form described by Offringa et al. (2010a), pre-existing
classification of invalid data is not taken into account in the
SUMTHRESHOLD method. An example of such a case is shown
in Fig. 2, which considers a simulated observation with 200
timesteps and 100 channels. The observation contains spectral-
line interference that affects one channel out of every ten
channels and increases power at higher frequencies. Timesteps
50–100 are known to be invalid data, and are set to high values
by raising them with 10 times the standard deviation.

The second row of Fig. 2 zooms in on time indices 30–60.
The first image of the second row shows the result of a basic
application of SUMTHRESHOLD. For this result, the knowledge
that some data was invalid is not used. As a result, the invalid
data is considered to be RFI, and samples before and after the
block of invalid data are flagged with an increased sensitivity.
As a result, the false-positive rate is clearly increased.

A simple approach to mitigate this is to consider invalid
values to be zero when applying the SUMTHRESHOLD method.
This results in the plot shown in the middle of the second row
of Fig. 2. This result does not show increased false positives
because of the invalid data. With this approach, information
about flagged samples on either side (before or after) of the
missing data does not (significantly) aid detection, because the
invalid data is considered to be zero, and this lowers the average
absolute sum in the iterations of the SUMTHRESHOLD method
that consider longer consecutive ranges. This results in a higher
false-negative rate than would theoretically be possible if the
information on both sides of the invalid data would have been

used together. In particular, the faintest interfering line at channel
index 5 is no longer detected.

While the loss in accuracy is minimal, there is a simple
method to aid the detection of interference on one side of the
block of invalid data with information from the other block: by
completely skipping data in the summed direction (time or fre-
quency). In other words, samples that are directly before and
after a block of invalid data are treated as if they are consecu-
tive. The result of this is shown in the third column of Fig. 2,
which indeed shows a lower false-negative rate. In particular, the
faintest spectral line at channel 5 is now fully detected.

When comparing these two approaches to deal with invalid
data, the approach to exclude the invalid data leads to a small
increase in false-positive detections when the RFI is not consis-
tently present in time or frequency, that is, when it is present on
one side of the invalid data block and not present on the other
side. This should be weighted against the increased sensitivity
when the RFI is consistently present. The optimal choice there-
fore depends on the behaviour of the RFI. Because persistent
RFI is common, and because it is more important to avoid false
negatives in persistent RFI (which might negatively affect later
processing steps) over avoiding false negatives in transient RFI
(which would lead to a small loss of data), we use the method of
excluding invalid data in our Apertif strategy.

We have implemented this in two ways: (i) stack all valid
data into a temporary storage, run the normal SUMTHRESH-
OLD algorithm on these data and reverse the stacking oper-
ation on the resulting mask; and (ii) skip over the invalid
data inside the SUMTHRESHOLD method. We have timed these
two implementations on simulated complex Gaussian data with
10 000 timesteps ×256 channels. Each run is repeated 100 times.
The first implementation runs about 2.5× faster (0.18 s per data
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set) compared to the second implementation (0.45 s per data set).
The first method is still 6× slower compared to the regular algo-
rithm (which takes 0.03 s per data set). This can be explained by
the extra copying of data that is required in each iteration (both
for the time and for the frequency direction).

2.4. Extension of the SCALE-INVARIANT RANK OPERATOR

The SIR-operator is a morphological operation that is used in
AOFLAGGER to extend the detected RFI mask in the time and
frequency direction. It is an effective step to follow threshold-
based methods to detect faint RFI based on the morphology of
detected flags (Offringa et al. 2012; Van de Gronde et al. 2016).
It is scale invariant, which implies that the fractional increase in
flags in one dimension is constant, that is, independent of the
scale of that feature in that dimension.

The SIR-operator is essentially a one-dimensional operator
that can be applied to a sequence of flag values. To apply it
to radio interferometric data, Offringa et al. (2012) applied the
operator in both the time and frequency dimensions: in time it
is separately applied to all the channels, and in frequency it is
applied separately to all timesteps. The union of these to steps is
taken as the result.

We define X as a single sequence of flag values, such that
X[i] holds a Boolean value that represents the state of the flag.
The output ρ(X) of the SIR-operator applied to X, is defined as
the union of all subsequences of the input X, for which

#i: j
F
≥ (1 − η) ( j − i) . (3)

Here, #i: j
F

is brief for #F (X[i : j]), which is the count-operator
that returns the number of flagged samples in a sequence. X[i : j]
is the subsequence of samples consisting of all elements X[k] for
i ≤ k < j and η ∈ [0 . . . 1] is a tunable parameter that sets the
aggressiveness of the operator.

Equation (3) implies that a sequence of flags caused by
invalid data is extended on both sides by a ratio of η. An example
of this is given in the centre-left panel of Fig. 3. This behaviour
is undesirable because, unlike most RFI signals, invalid data typ-
ically has a sharp boundary and should be flagged like that. The
extension of invalid data causes a high number of false positives.

A simple solution is to count invalid data as unflagged data in
the SIR operator. This implies that Eq. (3) is modified so that the
count operator only counts the number of flags corresponding to
valid data:

#i: j
FV
≥ (1 − η) ( j − i) , (4)

where #FV is the number of valid samples that are flagged in
the interval X[i : j] (as opposed to #F , which counts flagged val-
ues that can both be valid or invalid). Because the right side is
unchanged and the left side remains equal or is decreased com-
pared to Eq. (3), this modification always flags an equal or fewer
amount of samples. An application of this approach is demon-
strated in the centre-right panel of Fig. 3. This approach remedies
the extending of flags around invalid data.

The downside of the approach of Eq. (5) is that a continu-
ous transmitter is assumed not to be present in the invalid data
range, causing flags on either side to have a decreased proba-
bility of getting flagged. For example, in case a correlator fails
for a minute during which a transmitter remains present in one
channel with decreasing power, the transmitter is less likely to
be flagged after the correlator failure. To address this, we further
modify Eq. (3) to:

#i: j
F
≥ (1 − η) #i: j

V
, (5)

where #i: j
V

is the number of valid (flagged or unflagged) sam-
ples in interval X[i : j]. This approach is effectively the same as
removing the invalid samples from the sequence before applying
Eq. (3). Therefore, a transmitter that gets interrupted by invalid
data receives a higher probability to get flagged. An example of
this approach is given in the bottom-left panel of Fig. 3. Invalid
samples are skipped in this approach, and flagged samples on
one side of a sequence of invalid samples may increase the prob-
ability of samples on the other side of the sequence, irregardless
of the size of the invalid sample sequence.

The approach of Eq. (5) can overstep its goal of using infor-
mation from before and after a sequence of invalid data, in
particular in the case of very long sequences of invalid samples.
For example, when considering a transmitter that is active for one
minute before the receiving antenna is shadowed for 6 h (caus-
ing invalid data), it is undesirable that samples after shadowing
receive higher detection probability because of what happened
6 h ago. A final modification to the SIR operator we consider
is therefore to introduce a penalty parameter ρ that can balance
between Eqs. (4) and (5):

#i: j
F
≥ (1 − η)

(
( j − i)ρ + #i: j

V
(1 − ρ)

)
. (6)

With ρ = 0, invalid samples are skipped, making the method
equal to Eq. (5) and with ρ = 1, invalid samples are counted
as unflagged samples, making the method equal to Eq. (4). A
value of ρ = 0.2 implies that five invalid samples count as one
unflagged sample, thereby lowering the probability of flagging
through a block of invalid data, but still transferring some of the
flag information from before to after the invalid data and vice
versa. This method is demonstrated with a setting of ρ = 0.1 in
the bottom-right panel of Fig. 3.

Considering the results of all approaches in Fig. 3, it is
clearly undesirable to generally extend invalid data using the
traditional SIR-operator defined in Eq. (3). Any of the three dif-
ferent variations of the algorithm (Eqs. (4)–(6)), which can be
described by choosing different ρ-values in Eq. (6), solve this
issue. The different values of ρ do not cause significant changes.
We have tested values of ρ on a few observations, some with arti-
ficially added invalid data, and visually compared the flagging
results. Based on these results and the arguments given earlier
about finding a balance between Eqs. (4) and (5), we use ρ = 0.1.

Introducing the parameter for invalid-data weighting ρ has
no significant effect on the speed of the algorithm. The original
algorithm can be implemented with a computational complex-
ity of O(N) (Offringa et al. 2012), and the same holds for the
algorithm that includes the invalid-data penalty parameter.

2.5. High-pass filtering

The high-pass filter that is applied to remove astronomical source
contribution before thresholding is, for computational reasons,
implemented as a Gaussian low-pass filter followed by subtract-
ing the difference between the input and the low-pass filtered
result. The high frequency resolution of Apertif makes it nec-
essary to use a large filtering kernel in the frequency direction.
Effectively, a kernel with a Gaussian sigma of 875 channels and
2.5 timesteps is used. Before filtering, the data is averaged in
the frequency direction by a factor of 175, and after low-pass
filtering, the result is upscaled to the original resolution using
nearest neighbour resampling. This allows a convolution with a
much smaller kernel, improving the speed of this operation. The
result is an approximate of a Gaussian high-pass filter, but for the
purpose of removing the sky signal, this is sufficiently accurate.
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Fig. 3. Different ways of handling invalid data in the SIR-OPERATOR step on a simulated data set with a Gaussian burst of interference in a few
channels. Purple marks invalid data, yellow is detected as interference. The SIR-operator operates on the flag mask, hence the visibility values are
not used. Top: input data. Centre-left: invalid data is counted as flagged data. Centre-right: Invalid data is counted as unflagged data. Bottom-left:
invalid data is removed before applying the SIR-operator. Bottom-right: Invalid data is penalized with ρ = 0.1.

2.6. Bandpass correction

In the Apercal Apertif processing pipeline, the entire bandwidth
of Apertif is used at once during RFI detection. This is different
from the original LOFAR strategy, that flagged small (200 KHz)
subbands independently. Using the entire bandwidth has the ben-
efit that broadband RFI that covers several sub-bands can be
detected. This is relevant for Apertif observations, which are
affected by broadband transmitting satellites and radar.

Because the bandwidth of Apertif is subdivided into sub-
bands using a poly-phase filter bank, the band shape of the
poly-phase filter is imprinted on the data. An example of this is
shown in the top-left panel of Fig. 4. This is corrected for during
calibration, but during flagging (which needs to be done before
calibration) the shape is still present.

Performing detection using the entire bandwidth but without
correcting for the poly-phase filter bank causes sub-band edge
channels to be flagged, because the edges cause sharp transitions
that trigger the detector. Moreover, the deviations in the data
caused by the band-edges decrease the sensitivity of the detec-
tion towards actual RFI. The top-right panel of Fig. 4 shows an
example of flagging without bandpass correction.

To remedy this, we implement a sub-band band-pass cor-
rection step in the detector. This step corrects the poly-phase
filter shape using a static, observation-independent correction.
We determine the shape by performing gain-calibration on a
clean region of the band, and average the solutions over the
subbands. The bottom-left panel of Fig. 4 shows the resulting
corrected data set, and the bottom-right panel of Fig. 4 shows
the result of flagging the bandpass. As can be seen, the band-pass
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Fig. 4. Static sub-band band-pass correction before flagging with the Apertif flagging strategy. Top-left: input before correction; top-right: flagged
without correction; bottom-left: input after correction; bottom-right: flagged with correction.

correction has decreased the number of false detections consider-
ably. Some edge channels are still flagged, even after correction.
This is caused by aliasing in the sub-band edge channels, which
change the statistics of those edge channels slightly. This can
lead to artefacts which are very similar to RFI, hence they are
occasionally flagged. This flagging is normally of limited con-
cern, because those sub-band edge channels that are flagged
are of lower quality. Because of this, they are often discarded
during imaging.

2.7. Flagging of auto-correlations

Given the output voltage of the two feeds of the same antenna,
e =
(
ex, ey

)
, auto-correlated visibilities are formed by taking the

product eHe (i.e. the outer product e ⊗ e) and integrating, result-
ing in XX, XY, YX and YY visibilities. While auto-correlations are
not often used for scientific data products, they are useful for
system monitoring and quantifying the system noise. For such
analyses, it is desirable to flag RFI.

Compared to cross-correlated visibilities, auto-correlated
visibilities have different properties: in the XX and YY corre-
lations, system noise and RFI will not decorrelate, and auto-
correlated visibilities are sensitive to the global sky signal
instead of fluctuations in the sky signal. An example of auto-
correlated dynamic spectrum from Apertif is shown in the
top image of Fig. 5 (after sub-band band-pass correction as

described in Sect. 2.6). Compared to cross-correlations such as
shown in Fig. 4, the dynamic spectrum of auto-correlated visibil-
ities appears much smoother, is systematically offset from zero
and contains stronger structure in the frequency direction.

The flagging strategy that was optimized for the cross-
correlations detects RFI by comparing high-passed filtered
amplitudes of visibilities to the variance of these amplitudes.
Because the amplitude variance is much lower compared to
cross-correlations, this results in flagging auto-correlations with
increased sensitivity. At the same time, the auto-correlations
contain stronger instrumental frequency-structure. These two
effects combined causes the cross-correlation flagging strategy
to flag all of the visibilities of the auto-correlations of Fig. 5.

To solve this, we use a different flagging configuration for
the auto-correlations. The difference with the cross-correlation
strategy is as follows: (i) The time-direction SUMTHRESHOLD
step (sensitive to consistently high values in the time direction,
e.g. band-pass structure) is reduced in sensitivity by a factor of
6; (ii) The frequency-direction SUMTHRESHOLD step (sensitive
to consistently high values in the frequency direction, e.g. broad-
band RFI) is reduced in sensitivity by a factor of 2; (iii) The size
of the high-pass filter kernel is reduced by 3.5 in the frequency
direction, to filter out more of the spectral gain fluctuations of the
instrument; (iv) The number of iterations is increased from 3 to
5. This increases the required computations but improves robust-
ness in the presence of a large dynamic range, as is the case for
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Fig. 5. Flagging of auto-correlations. Top image: input after sub-
band band-pass correction; centre image: same after iterative high-pass
filtering and with 10x more sensitive colour scale; bottom image:
after flagging with the auto-correlation specific strategy. Because auto-
correlations have different properties compared to cross-correlations,
they require a specialized flagging strategy.

auto-correlations; (v) Only the XX, XY and YY correlations are
used for detection, to reduce unnecessary computations. YX cor-
relations are equal to the conjugated XY correlations, and using
these for flagging does not provide additional information.

A result of this auto-correlations strategy is shown in the bot-
tom image of Fig. 5. Visual inspection shows that all visible RFI
is indeed detected, and the number of false detections appears
low. Because we do not have a ground truth, we do not try to
quantify these results. Similar to the cross-correlation strategy,
the auto-correlation strategy flags parts of the sub-band edges.
The centre image of Fig. 5 shows the high-pass filtered data of
the final iteration.

2.8. Avoiding HI removal

In observations that cover bright nearby galaxies or the Galactic
plane, the 1420 MHz HI line may be detectable in the visibil-
ities from a single cross-correlated baseline. For example, the
top-left image of Fig. 6 shows one baseline from a M31 obser-
vation, which clearly shows a contribution from HI-emission
around 1420 MHz. This poses a challenge for RFI detection,
because such a fine, spectrally consistent signal is quite similar
to RFI. As shown in the top-right image of Fig. 6, when standard
flagging is performed on these data, the HI emission is detected
as RFI.

We analyse different ways to mitigate this. In the Nether-
lands, frequencies between 1400–1427 MHz are reserved for
radio astronomy and other forms of passive research1, and
transmitting inside this band is not allowed. As a result, these
frequencies are almost free of man-made emission. A simple
mitigation strategy is therefore to disable RFI detection inside
this band. Unfortunately, the recorded visibilities do occasion-
ally contain strong, non-astronomical values inside this band.
The three vertical lines in the images of Fig. 6 are an exam-
ple of such an observation. Most frequently, these are caused
by saturation of a receiver, causing a broadband-like signal in
the recorded visibilities, although they might occasionally be
caused by RFI emitted at these frequencies (e.g. from a spark-
ing device or lightning). Leaving these broadband contaminants
in the data causes degradation of the images. In particular, they
cause visible stripes in continuum, full bandwidth images.

Another approach is to flag only based on Stokes Q, U and V.
Man-made RFI is often polarized, whereas the sky emission in
these polarizations is generally much fainter. The result of this
approach is shown in the bottom-left image of Fig. 6. While
a part of the HI emission has been left intact, it is still bright
enough in these polarizations to get detected. This is even the
case when flagging on only one of these polarizations: the HI
emission is present in all of the polarizations. Moreover, we
occasionally observe RFI that is only visible in Stokes I, and
removing any of the polarizations decreases the effectiveness
of RFI detection. In Fig. 6, the transmitter around 1425 MHz
/ 0:00 UTC is for example not as well detected in this approach
compared to standard flagging.

Because none of these approaches give good results, we con-
sider another approach, and run the flagger twice: in run A) we
flag the data with the normal detection strategy, and in run B)
we run the detection with a strategy that is insensitive to spectral
lines. For frequencies outside the HI range we use the flags from
run A), and inside the HI range (1418–1424 MHz) we use B).
The result of this approach is shown in the bottom-right image
of Fig. 6. With this approach, broadband structures have been
detected as RFI and HI emission is left in the data.

To avoid flagging spectral lines in run B), we adjust the
following flagging settings during this run):

– The high-pass filter in frequency direction is set to have
a kernel size of one channel, to filter out fluctuations in
frequency.

– The sensitivity of the time-direction sumthreshold step is
decreased by a factor of 4, to reduce flagging of line-like
structures.

– The sensitivity of the frequency-direction sumthreshold step
is decreased by a factor of 2. This reduces flagging of
temporal fringes in HI emission.

1 The Dutch spectrum allocations can be found at https://www.
agentschaptelecom.nl/
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Fig. 6. Band-pass corrected M31 data from WSRT RT9 × RTA with a strong HI signal. Top-left image: input data. The bright emission around
1420 MHz is from HI and should not be flagged. The vertical lines are instrument or RFI artefacts that should be flagged. Top-right image: after RFI
detection without HI modifications, showing in pink what is flagged. Bottom-left image: after RFI detection using Stokes Q, U and V. Bottom-right
image: after RFI detection using a specialized strategy for 1418–1424 MHz.

– The number of iterations is increased to remain robust in the
presence of strong HI emission.

On overall, the resulting strategy is almost entirely insensitive to
spectral-line-like structures. The sensitivity to broadband struc-
tures is also reduced because of these changes, but given that this
strategy remains sensitive to faint broadband structures such as
shown in Fig. 6, we consider this tolerable.

Because run B) requires only a small part of the full band-
width, the second flagging run is relatively fast, hence the
increase in computations caused by this is modest (about 20%).

2.9. Reading overhead and memory considerations

During the AOFlagger stage of the APERCAL pipeline, observa-
tions are stored in the Casacore Measurement Set format. In this
format, the data of an observation is lexicographically sorted in
time, and then in baseline and frequency. While this ordering
is suitable for calibration, flagging requires the data baseline by
baseline. Unfortunately, the data for a single baseline is spread
throughout the file. Therefore, reading a baseline requires read-
ing the file from beginning to end. Because of the block size and
caching of storage media, it is inefficient to read the baselines
one by one with this approach.

AOFlagger supports three methods for accessing the data:
– Direct reading. In this mode, the data is directly read from

the measurement set just before they are needed. Because
multiple baselines are processed in parallel using multi-
threading, a few baselines are read from the measurement
set at once. This mode results in scanning through the input
data multiple times, which is computationally costly.

– Reorder before processing. In this mode, the whole mea-
surement set is reordered by baseline, frequency and then
time and rewritten to disk in a binary, internal format before
processing is started. This results in reading the data only

twice and is generally faster than the direct reading mode,
but requires disk space to store the copy of the data.

– In-memory data. In this mode, the whole measurement set is
read into memory before starting processing. This results in
reading the data only once and is generally the fastest mode,
but requires a considerable amount of memory.

Apertif data sets are large and expensive to read: reading the
data more than once is undesirable. As a result, the only accept-
able reading mode is the in-memory mode. In the particular
computing mode where Apercal runs, the amount of memory
required by this mode is a considerable constraint, and requires
a dedicated node for each flagging operation performed.

Other observatories have solved this issue by integrating
AOFLAGGER into a multi-step preprocessing pipeline that stream
through the data, split the data in time for flagging and hand
these data over part by part to AOFlagger via its application
programming interface. Examples of such pipelines are COTTER
(Offringa et al. 2015) and DP3 (Van Diepen et al. 2018), which
are preprocessing pipelines for the Murchison Widefield Array
and the Low-Frequency Array, respectively. In this approach,
several tasks (e.g. conversion, phase rotation, flagging, averag-
ing, compression) can be applied with a single read through the
data, thereby reducing the read overhead. In the case of Apertif,
such a streaming pipeline does not exist. Instead, aoflagger runs
as a stand-alone tool inside Apercal.

To solve the memory and reading issue for Apertif, we imple-
mented a time-chunking approach into aoflagger. In this mode,
aoflagger reads small chunks in time and flags these indepen-
dently. This makes it possible to use the memory reading mode,
because the data for individual chunks is small enough to fit in
memory. It does imply that the algorithm has less information
available to do its RFI detection. Therefore, it is important to
let time chunks still have a significant size, because AOFlagger
would otherwise not be able to find faint RFI, that is persistent
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in time, but not detectable in a small chunk. For Apertif, we use
a chunk size corresponding to about half an hour of data.

2.10. Use of Lua

Before AOFlagger version 3, AOFlagger strategies were written
in the extensible markup language (XML). An XML file spec-
ifies a sequence of steps and is interpreted by AOFlagger, and
this sequence is executed separately for the data from every base-
line. The sequences run multi-threaded, and reading and writing
of data is done outside of the strategy. Examples of XML steps
are to calculate visibility amplitudes; running SUMTHRESHOLD
or SIR operations on the data; or to combine the flags of all
polarizations.

Over the years, the use of AOFlagger extended to more
and more use-cases: different telescopes, flagging after calibra-
tion, high-resolution flagging, etc. It became desirable to make
the strategies more flexible. In particularly, it became desirable
to support standard scripting structures such as loops, condi-
tionals, variables and to provide standardized documentation of
the steps. The idea was therefore formed to embed a standard
interpreter into AOFlagger and provide a function interface for
each step. The data-intensive computations are still performed
by high-performance precompiled C++ code, while these are
glued together using an interpreted script, thereby combining
flexibility with high performance.

Our first approach was to embed it into Python, because of
its popularity in astronomical data science. After having imple-
mented a prototype that embeds the Python interpreter into
AOFlagger, it turns out some of the features of the Python inter-
preter conflict with how AOFlagger runs these scripts. Particular
challenges were to deal with the global interpret lock; memory
management; and fast restarts of the interpreter. While there are
various ways to work around these issues, the design goals of
the Python language and interpreters do not focus specifically to
make the language embeddable.

Lua2 is a scripting language that is widely used for embed-
ding scripts in applications, notably in computer games to
implement scripted game sequences. This scenario is close to
the AOFlagger use-case: the interpreter is integrated into such
games, called many times and supports multi-threaded script
execution. Algorithmic code that requires high performance can
be implemented in compiled languages (C++ in the AOFlag-
ger case). With this idea in mind, we decided to integrate
the Lua interpreter into AOFlagger and implement all steps as
Lua functions.

The use of a full scripting language has increased the possi-
bilities inside the flagging strategies considerably. For example,
it is now possible to adapt the strategy based on properties such
as the baseline length, frequency, auto- or cross-correlation, etc.
A consequence of the new interface is that existing strategies
need to be rewritten, which can not be done automatically. All
default strategies have been rewritten to use Lua, which cur-
rently includes specialized scripts for 11 observatories (Aartfaac,
APERTIF, Arecibo, ATCA, Bighorns, JVLA, MWA, WSRT,
LOFAR, NenuFAR). These have all been verified to produce the
same result as the old XML-based strategies. Because the new
function interface gives better control over what steps need to
be run, the speed of the new strategies is slightly higher (several
percent). We do not notice any significant overhead from using
Lua: the computational time is dominated by the computations
inside the function calls.

2 https://www.lua.org/

3. Results

Apertif observations are processed by the automated Aper-
cal pipeline. This pipeline includes the flagging strategy as
described in Sect. 2. In this section, we present results of the
full flagging step on Apertif observations. The data that we look
at has been recorded between 2019 and 2022. Science products
from the first year of observing have been described in the first
Apertif data release (Adams et al. 2022; Kutkin et al. 2022).

3.1. RFI detection examples

The detection strategy described in Sect. 2 runs fully automated,
and does not require further flagging before calibration and con-
tinuum imaging. In general, manual inspection of data after RFI
detection shows no residual RFI and few false positives. Figure 7
shows the 1280–1430 MHz range of a typical observation. The
top plot shows the data before RFI detection, and the bottom
plot shows in white what has been detected as RFI. Figure 8
shows a challenging case with wider bandwidth, with a mod-
erate amount of RFI, missing data (1200–1220 MHz) and strong
fringes. Top and bottom plots show again before and after detec-
tion. This also demonstrates the challenging situation for radio
astronomical science between 1150 and 1300 MHz.

For continuum imaging, it is often useful (or at least prag-
matic) to take out any visibility that appears to have a contri-
bution from RFI. For spectral imaging, a flagging result such as
shown in Fig. 8 is problematic, because many channels are fully
removed. In those cases, it is possible to reduce the sensitivity
of the RFI detection. The sensitivity is specified as a variable
in the script. For the detection result shown in Fig. 9, the sensi-
tivity was decreased by a factor of 3. Compared with the result
in Fig. 8, this reduced the flagging from 49 to 33%. This takes
out the strongest RFI, but leaves weak (but visible) RFI in the
data. Decreasing the sensitivity further continues to trade the
availability of visibilities with a lower quality of those visibility.

3.2. RFI characteristics and long-term statistics

During the flagging step, statistics are collected that summarize
the (detected) RFI occupancy and data quality. We have collected
these statistics for 304 of the currently processed observations.
Averaged over all these observations and the full bandwidth, the
total detected RFI occupancy is 11.1% in the cross-correlated
baselines and 14.6% in auto-correlated baselines. Figure 10
shows the detected spectral RFI occupancy for each observa-
tion, as well as the occupancy averaged over all observations.
Only cross-correlated data is included. At most frequencies,
the average loss of data due to RFI is about 10%, but with a
spread of approximately 0–15% between observations, and a few
larger outliers.

Frequencies between 1400 and 1427 MHz are reserved for
radio astronomy. At these frequencies, the average RFI occu-
pancy is slightly lower (approximately 8%), but is evidently still
affected by instrumental effects (such as receiver saturation) or
natural and unintended RFI (such as lightning). Figure 6 shows
data that is affected by such broadband artefacts. It is likely that
the ∼10% base-level of occupancy is caused by such artefacts.

Some observations show a small excess RFI occupancy at
1420 MHz. This is caused by HI that is detected as RFI. The
methods to avoid flagging HI that are described in Sect. 2.8
were implemented only halfway 2021. Some of the observations
that are flagged before that still show false-positive detections
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Fig. 7. Typical flagging result for a single baseline in a wideband observation. The top panel shows the input visibilities, and the bottom panel
shows the visibilities overlaid with the detection result in white. These plots show the Stokes I visibilities. Some interference features are only
visible in Stokes Q, U or V, such as the vertical features around midnight. All interference features have successfully been detected, and no obvious
undesirable detections are visible, with the exception of horizontal flagged features every 200 kHz, caused by the sub-band bandpass (see Fig. 4).
18% of the data gets flagged for the baseline in this observation.

at HI frequencies, but all observations after avoiding HI was
implemented show indeed no HI flagging.

The same base level of 10% is not visible at frequencies
above 1430 MHz. The reason for this difference is that only a
relative small number of observations cover frequencies above
1430 MHz. Frequencies between 1427 and 1492 MHz are allo-
cated to various services, including mobile communication and

fixed transmissions3. Some of these are satellite based. In 2020,
the 1452–1492 MHz band was auctioned in the Netherlands and
thereafter allocated for the use of 5G mobile phone downlink. As
shown in Fig. 10, the use of data above 1430 MHz is limited.

3 See https://www.agentschaptelecom.nl/
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Fig. 8. Detection result for a full 300-MHz bandwidth observation.

Some channels between 1300–1400 MHz contain a few out-
lier RFI occupancies. These are caused by a nearby radar station
that is occasionally turned on. Frequencies between 1130 and
1300 MHz are predominantly affected by RFI from Global Nav-
igation Satellite Systems (GNSS), such as the US GPS, Russian
GLONASS, Chinese BeiDou, and European Galileo satellite
constellations. All these constellations use satellites in orbits
at ∼2000 km and with high orbital inclinations (i = 54–65◦)

to provide global coverage. Frequencies for wide band trans-
missions are assigned to, and shared between, these systems at
1176.45, 1191.795, 1207.14, 1227.6, 1278.75 MHz (for GPS, Bei-
Dou, Galileo) and 1202.025 and 1242.9375–1251.6875 MHz (for
GLONASS).

Wide band signals are detected at these frequencies through-
out the entire observation of Fig. 8 covering the band down
to 1130 MHz. Using orbital ephemerides of these satellite
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Fig. 9. Same as Fig. 8, but flagged with 3× lower sensitivity.

constellations, we find that the strong temporal RFI observed
in Fig. 8 at 13:06, 14:46, 16:29, 18:13 and 19:54UTC is caused
by BeiDou satellites passing within 5◦ from the pointing of the
APERTIF compound beam. The pass of 18:13UTC had a min-
imum separation of 0.◦31 and led to saturation of the receiver,
affecting the entire observing band. Two GPS satellites passed at
1.◦47 and 2.◦30 separation from the beam pointing at 22:02 and
23:02UTC, and one Galileo satellite at 3.◦72 at 22:59UTC, and
coincident increases of the RFI levels are observed, but not as
strong as with the passes of BeiDou satellites. The GNSS signals
observed away from these passes near the primary APERTIF
beam are likely due to far sidelobes or multi-path reflections of
GNSS signals from the WSRT focus structure or other nearby
structures directly into the receiver.

3.3. Computational requirements

In this section we summarize the computational requirements
of the Apertif RFI detection strategy, with the aim of mak-
ing it possible to approximate the computational requirements
for other telescopes when a similar flagging strategy is used.
Since the total throughput is depending on many complex fac-
tors of the computing platform (e.g. clock speed, cores, memory
bandwidth, instruction set, vectorization), we aim at giving a
first-order estimate only.

We measure the performance of flagging a set with visibil-
ities from a single observation. We use an Apertif observation
with 1346 timesteps, 24 572 channels and 4 polarizations, for a
total of 132M visibilities. This makes the visibility data, which
consists of 4-byte single-precision real and imaginary values,
1.1 GB in size.

We perform our test on a desktop machine with an AMD
Ryzen 7 2700X 8-Core processor and 64 GB of memory. This
processor can perform hyper-threading, and thus we run 16
detections in parallel. We load the data in memory before detec-
tion and do not store the results, to avoid any disk access.
Averaged over 10 runs, it takes 46 s to run 16 detections, which
amounts to a throughput of 370 MB/s (or 46M visibilities/s). At
the time of writing, a typical fast spinning disk achieves a sus-
tained reading throughput of a few hundred MB/s. Hence, disk
access can be a significant cost of a stand-alone RFI detection
step. This can be problematic for supercomputers, because they
have high computing power, but not a high I/O throughput.

3.4. Comparison against a machine learning approach

Some studies have found that machine learning can improve the
accuracy of RFI detection. In Yang et al. (2020), the authors test
their own SUMTHRESHOLD implementation against a machine
learning approach, using a ground truth flag mask that is man-
ually determined by an engineer. Such a ground truth mask is
difficult to make in general, including for Apertif data, where
broadband RFI tapers off and it is unclear from which points
samples are truly unaffected by RFI. We can however conclude
that, after our pipeline, all visibly affected samples have been
identified. Moreover, imaging results have achieved the thermal
noise of the instrument, thereby indicating that the accuracy of
interference detection is not a limitation.

This conflicts somewhat with the conclusions made by Yang
et al. (2020). The SUMTHRESHOLD implementation that is
used there to compare their results with, does not achieve the
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Fig. 10. Percentage of RFI over frequency detected in 304 Apertif observations, excluding auto-correlations.

published accuracy of AOFLAGGER, because residual interfer-
ence is visually present. Potential explanations for these dif-
ferences could be (i) that Yang et al. train their network for a
specific scenario but did not optimize their SUMTHRESHOLD
approach; or (ii) that they do not use a full (i.e. AOFLAGGER-like)
SUMTHRESHOLD-based pipeline that includes the SIR operation
and that is similarly optimized for their instrument. An impor-
tant consideration is that morphological operations are aimed at
detecting RFI that is below the noise, therefore invisible to sci-
entists that manually classify RFI. In the comparisons done in
Yang et al. 2020, samples detected by the morphological opera-
tor would all be counted as false positives, whereas this operator
has been shown to improve the final science results (Offringa
et al. 2012). It can therefore not yet be stated that, based on accu-
racy, machine learning methods are outperforming traditional
based methods. Rather, it is clear that both methods are com-
petitive and are accurate enough to largely mitigate the problem
of interference in radio data.

There are differences in the computational performance
though. In Xiao et al. (2022), machine learning methods flag a
one-hour FAST observation of 67 GB in 61% of the observing
time using 8 computing nodes (Xiao et al. 2022). This amounts
to a single-node computational performance of 14 GB/h. On
the other hand, the single-node performance of the AOFLAG-
GER approach listed in Sect. 3.3 is 370 MB/s, or 1.3 TB/h,
and AOFLAGGER is therefore almost two orders of magnitude
faster. While the performance of the computing nodes used for
the computational performance analyses may differ somewhat,
and it is therefore not a direct comparison, it is evident that the
AOFLAGGER approach is significantly faster. In Sun et al. (2022),
authors compare the run-time of AOFLAGGER to their convolu-
tional neural network (CNN) approach and find that AOFLAGGER
is two to four times faster. However, the authors measured the
total run-time of the aoflagger executable, which would include
disk access, start-up overhead and time spent in the CASACORE
library to transfer the measurement set data. Because the flag-
ging speed is near the disk access speed, this overhead can be
substantial. A better benchmark is possible by using the C++
or Python API of AOFLAGGER directly. On their Sim_RFI-1

dataset, they reach an AOFLAGGER speed of 250 GB/h, while
in this work, with a more advanced strategy, we reach 1.3 TB/h
on similar hardware. Their CNN method reaches a speed of
145 GB/h, which is an order of magnitude faster than what is
reached by Xiao et al. (2022), but is an order of magnitude below
what we reach with our AOFLAGGER approach.

4. Discussion and conclusions

We have described and demonstrated an automated RFI detec-
tion strategy aimed at flagging Apertif data. Our detection
strategy implements novel SUMTHRESHOLD and SIR-operator
algorithms that take prior information about invalid data into
account. It also avoids the flagging of HI emission, works
on auto-correlations, corrects the sub-band band-pass and con-
tains some further parameter optimizations for Apertif. The
change from the AOFlagger XML strategies towards fully scripted
strategies provides flexibility that made these changes quite
easy to implement and supports flexibility during experimen-
tation. Besides making the process easier and faster, an auto-
mated RFI detection strategy also makes the results repro-
ducible, compared to when RFI is flagged manually, and it
allows reducing the data size by averaging early on in the data
reduction processing.

We expect that our RFI detection strategy will work for data
from other instruments, in particular those with a frequency cov-
erage comparable to Apertif, such as MeerKAT, ASKAP, JVLA
and future SKA-mid observations around 1.0–1.5 GHz. Different
bands might require some changes to the strategy parameters, but
should be able to reuse a large part of the approach.

While machine learning techniques may compete with the
accuracy of AOFlagger, they do not compete with its speed.
Moreover, we have shown it is possible to add new features
to AOFlagger, such as avoiding the 21-cm HI signal, accurate
detection in the presence of invalid data and flagging of auto-
correlations. None of the current available machine learning
techniques support these scenarios. Most parameters, such as
the sensitivity towards broadband and line RFI, or the expected
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smoothness of the data, are intuitive and easy to tweak for sci-
ence cases that, for example, require that transients do not get
flagged, or that require a difference balance between taking out
all visible RFI on one hand, and keeping as much data available
for further processing on the other hand. This will be chal-
lenging, if at all possible, to implement in a machine learning
framework.

In this work, we have not made use of the multi-beaming
capabilities of Apertif: beam are flagged independently. While
some first-order testing indicates that using data integrated over
all beams does not improve flagging accuracy, it can be expected
that RFI does correlate somewhat over beams. A strategy where
the integrated data is searched for RFI, and where this is used
as additional input for the flagging of individual beams, might
be effective for detecting RFI that is below the noise for a single
beam.
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